Hybrid methods combining quantum chemistry and classical models are largely used to describe solvent effects in absorption and emission processes of solvated chromophores. Here we compare three different formulations of these hybrid approaches, using a continuum, an atomistic, or a mixed description of the solvent. In all cases mutual polarization effects between the quantum and the classical subsystems are taken into account. As a molecular probe, 3-hydroxyflavone has been selected due to its rich photophysics, which involves different tautomeric and anionic forms. We show that a clear assignment of the measured spectroscopic signals to each specific form can be achieved by combining the different solvation models into an integrated and cost-effective strategy. Previously proposed mechanisms for the excited-state proton transfer (ESIPT), specific solvent perturbation effects on ESIPT, and solvent-assisted anion formation are also validated in terms of short- and long-range solvation effects.
Photodissociation of the nitrogen molecule in the vacuum ultraviolet (VUV) is a major source of reactive nitrogen atoms in the upper atmosphere of Earth and throughout the solar system. Recent experimental studies have revealed strong energy dependence of the VUV photodissociation branching ratios to the N(4S3/2)+N(2D J ) and N(4S3/2)+N(2P J ) product channels, the primary dissociation pathways in the 108,000–116,000 cm−1 energy region. This produces N(2D J ) and N(2P J ) excited atoms that differ significantly in their chemical reactivity. The branching ratios oscillate with increase in the VUV excitation energy. We use high-level ab initio quantum chemistry to compute the potential curves of 17 electronic excited states and their nonadiabatic and spin–orbit couplings. The dynamics follow the sequential evolution from the optically excited but bound 1 Σ u + singlets. Spin–orbit coupling enables transfer to the dissociative triplet and quintet states. We compute the photodissociation yields through the dense manifold of electronic states leading to both exit channels. The dynamical simulations accurately capture the branching oscillations and enable a detailed look into the photodissociation mechanism. The major contribution to the dissociation is through the two lowest 3Π u states. However, for both isotopomers, at about 110,000 cm−1 there is an abnormally low dissociation rate into the N(4S3/2)+N(2P J ) channel that enables comparable participation of triplet 3 Σ u − and quintet 5Π u electronic states. This leads to the first peak in the branching ratio. At higher energies, trapping of the population in the 33Π u bound triplet state occurs. This favors dissociation to the lower-energy N(4S3/2)+N(2D J ) channel and results in the observed second switch in branching ratios.
Multi-state electronic dynamics at higher excitation energies is needed for the understanding of a variety of energy rich situations, including chemistry under extreme conditions, vacuum ultraviolet (VUV) induced astrochemistry, and attochemistry. It calls for an understanding of three stages, energy acquisition, dynamical propagation, and disposal. It is typically not possible to identify a basis of uncoupled quantum states that is sufficient for the three stages. The handicap is the large number of coupled quantum states that is needed to describe the system. Progress in quantum chemistry provides the necessary background to the energetics and the coupling. Progress in quantum dynamics takes this as input for the propagation in time. Right now, it seems that we have come of age with potential detailed applications. We here report a demonstration to a coupled electron-nuclear quantum dynamics through a maze of 47 electronic states and with attention to the order in perturbation theory that is indicated using propensity rules for couplings. Close agreement with experimental results for the VUV photodissociation of 14N2 and its isotopomer 14N15N is achieved. We pay special attention to the coupling between two dissociative continua and an optically accessible bound domain. The computations reproduce and interpret the non-monotonic branching between the two exit channels producing N(2D) and N(2P) atoms as a function of excitation energy and its variation with the mass.
Photodissociation of the nitrogen molecule in the vacuum ultraviolet (VUV) is a major source of reactive nitrogen atoms in the upper atmosphere of Earth and throughout the solar system. Recent experimental studies reveal strong energy dependence of the VUV photodissociation branching ratios to N(4S3/2)+N(2DJ) and N(4S3/2)+N(2PJ) product channels, the primary dissociation pathways in the 108,000-116,000 cm-1 energy region. This produces N(2DJ) and N(2PJ) excited atoms that differ significantly in their chemical reactivity. The branching ratios oscillate with increase in the VUV excitation energy. We use high-level ab initio quantum chemistry to compute the potential curves of 17 electronic excited states and their non-adiabatic and spin-orbit couplings. The dynamics follow the sequential evolution from the optically excited but bound singlets. Spin-orbit coupling enables transfer to the dissociative triplet and quintet states. We compute the photodissociation yields through the dense manifold of electronic states leading to both exit channels. The dynamical simulations accurately capture the branching oscillations and enable a detailed look into the photodissociation mechanism. The major contribution to the dissociation is through the two lowest states. However, for both isotopomers, at about 110,000 cm-1 there is an abnormally low dissociation rate that enables comparable participation of triplet and quintet electronic states. This leads to the first peak in the branching ratio. At higher energies, trapping of the population in the bound triplet state occurs. This favors dissociation to the lower energy N(4S3/2)+N(2DJ) channel and results in the observed second switch in branching ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.