The Greater Caucasus is a part of seismically active Alpine–Himalayan orogenic belt and has been a center of significant volcanic activity during the Quaternary period. That led to the formation of the number of hydrothermal habitats, including subterranean thermal aquifers and surface hot springs. However, there are only a limited number of scientific works reporting on the microbial communities of these habitats. Moreover, all these reports concern only studies of specific microbial taxa, carried out using classical cultivation approaches. In this work, we present first culture-independent study of hydrotherms in the Republic of North Ossetia-Alania, located in the southern part of the North Caucasus. Using 16S metabarcoding, we analyzed the composition of the microbial communities of two subterranean thermal aquifers and terrestrial hot springs of the Karmadon valley. Analysis of correlations between the chemical composition of water and the representation of key taxa allowed us to identify the key factors determining the formation of microbial communities. In addition, we were able to identify a significant number of highly abundant deep phylogenetic lineages. Our study represents a first glance on the thermophilic microbial communities of the North Caucasus and may serve as a basis for further microbiological studies of the extreme habitats of this region.
Genome editing technologies that are currently available and described have a fundamental impact on the development of molecular biology and medicine, industrial and agricultural biotechnology and other fields. However, genome editing based on detection and manipulation of the targeted RNA is a promising alternative to control the gene expression at the spatiotemporal transcriptomic level without complete elimination. The innovative CRISPR-Cas RNA-targeting systems changed the conception of biosensing systems and also allowed the RNA effectors to be used in various applications; for example, genomic editing, effective virus diagnostic tools, biomarkers, transcription regulations. In this review, we discussed the current state-of-the-art of specific CRISPR-Cas systems known to bind and cleave RNA substrates and summarized potential applications of the versatile RNA-targeting systems.
Type V Cas12a nucleases are DNA editors working in a wide temperature range and using expanded protospacer-adjacent motifs (PAMs). Though they are widely used, there is still a demand for discovering new ones. Here, we demonstrate a novel ortholog from Ruminococcus bromii sp. entitled RbCas12a, which is able to efficiently cleave target DNA templates, using the particularly high accessibility of PAM 5′-YYN and a relatively wide temperature range from 20 °C to 42 °C. In comparison to Acidaminococcus sp. (AsCas12a) nuclease, RbCas12a is capable of processing DNA more efficiently, and can be active upon being charged by spacer-only RNA at lower concentrations in vitro. We show that the human-optimized RbCas12a nuclease is also active in mammalian cells, and can be applied for efficient deletion incorporation into the human genome. Given the advantageous properties of RbCas12a, this enzyme shows potential for clinical and biotechnological applications within the field of genome editing.
A number of alleles of polymorphic genes, dysfunctions of the hypothalamic-pituitary-adrenal axis, neurotransmitter disorders, and manifestations of immune dysregulation are associated with vulnerability to stress. Post-stress states of humans and animals are accompanied by signs of neuroinflammation, the causes and mechanisms of which remain to be elucidated. The article discusses epigenetic mechanisms by which the intestinal microbiota might participate in the initiation and maintenance of post-stress inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.