There are urgent needs to establish capability to rapidly assess radiation injury in mass casualty and population monitoring scenarios. This study's objective was to evaluate several currently available biomarkers that can provide early diagnostic triage information after radiation exposure. Hematology and blood chemistry measurements were performed on samples derived from a nonhuman primate (Macaca mulatta; n = 8) total-body irradiation (TBI) model (6.5-Gy Co gamma rays at 0.6 Gy min). The results from this study demonstrate: a) time course for changes in C-reactive protein (CRP) (-2 d to 15 d after TBI); b) time-dependent (-2 d, 1-4 d after TBI) changes in blood cell counts [i.e., lymphocytes decrease to 5-8% of pre-study levels at 1 to 4 d after TBI; ratio of neutrophil to lymphocytes increases by 44 +/- 18 (p = 0.016), 12 +/- 4 (p = 0.001), 8 +/- 2 (p = 0.0020), and 5.0 +/- 2 (p = 0.002) fold at 1, 2, 3, and 4 days after TBI, respectively]; and c) 4.5 +/- 0.8 (p = 0.002)-fold increases in serum amylase activity 1 d after TBI. Plasma CRP levels at 1 d after exposure were 22 +/- 13 (p = 0.0005) (females) and 44 +/- 11 (p = 0.0004) (males)-fold elevated above baseline levels. One hundred percent successful separation of samples from exposed macaques (24 h after TBI) vs. samples from the same macaque taken before irradiation using a discriminant analysis based on four biomarkers (i.e., lymphocytes, neutrophils, ratio of neutrophils to lymphocytes, and serum amylase activity) was demonstrated. These results demonstrate the practical use of multiple parameter biomarkers to enhance the discrimination of exposed vs. non-exposed individuals and justify a follow-on rhesus macaque dose-response study.
Nuclear accidents or terrorist attacks could expose large numbers of people to ionizing radiation. Early biomarkers of radiation injury will be critical for triage, treatment, and follow-up of such individuals. The authors evaluated the utility of multiple blood biomarkers for early-response assessment of radiation exposure using a murine (CD2F1, males) total-body irradiation (TBI) model exposed to ⁶⁰Co γ rays (0.6 Gy min⁻¹) over a broad dose range (0-14 Gy) and timepoints (4 h-5 d). Results demonstrate: 1) dose-dependent changes in hematopoietic cytokines: Flt-3 ligand (Flt3L), interleukin 6 (IL-6), granulocyte colony stimulating factor (G-CSF), thrombopoietin (TPO), erythropoietin (EPO), and acute phase protein serum amyloid A (SAA); 2) dose-dependent changes in blood cell counts: lymphocytes, neutrophils, platelets, and ratio of neutrophils to lymphocytes; 3) protein results coupled with peripheral blood cell counts established very successful separation of groups irradiated to different doses; and 4) enhanced separation of dose was observed as the number of biomarkers increased. Results show that the dynamic changes in the levels of SAA, IL-6, G-CSF, and Flt3L reflect the time course and severity of acute radiation syndrome (ARS) and may function as prognostic indicators of ARS outcome. These results also demonstrate proof-in-concept that plasma proteins show promise as a complimentary approach to conventional biodosimetry for early assessment of radiation exposures and, coupled with peripheral blood cell counts, provide early diagnostic information to manage radiation casualty incidents effectively, closing a gap in capabilities to rapidly and effectively assess radiation exposure early, especially needed in case of a mass-casualty radiological incident.
Development and validation of early-response radiation injury biomarkers are critical for effective triage and medical management of irradiated individuals. Plasma protein and haematological profiles were evaluated using multivariate linear-regression analysis to provide dose-response calibration curves for photon-radiation dose assessment in 30 rhesus macaques total-body-irradiated to 1-8.5 Gy with (60)Co gamma rays (0.55 Gy min(-1)). Equations for radiation dose received were established based on different combinations of protein biomarkers [i.e. C-reactive protein (CRP), serum amyloid A (SAA), interleukin 6 (IL-6) and Flt3 Ligand (Flt3L)] at samples collection time-points 6 h, 1, 2, 3, 4 and 7 d post-total-body irradiation. Dynamic changes in the levels of CRP, SAA, IL-6 and Flt3L may function as prognostic indicators of the time course and severity of acute radiation sickness (ARS). The combination of protein biomarkers provides greater accuracy for early radiation assessment than any one biomarker alone.
Acute radiation sickness (ARS) following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI) has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS) developed at the Veterinary Sciences Department (VSD) of the Armed Forces Radiobiology Research Institute (AFRRI) to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male) TBI model (6–14 Gy, 60Co γ-rays at 0.6 Gy min-1), which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated), 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors). In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2–4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies.
Results from this study represent a proof-of-concept for multiple blood-proteins biodosimetry approach. It was demonstrated for the first time that protein expression profile could be developed not only to assess radiation exposure in male BALB/c mice but also to distinguish the level of radiation exposure, ranging from 1-7 Gy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.