Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis.
Melatonin was previously shown to reduce blood pressure and left ventricular (LV) remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents LV remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month-old male Wistar rats (12 per group) were treated for 2 wk as follows: controls, rats treated with melatonin (10 mg/kg/day) (M), rats treated with isoproterenol (5 mg/kg/day intraperitoneally the second week) (Iso), and rats treated with melatonin (2 wk) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol-induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The antiremodeling effect of melatonin may be of potential benefit in patients with heart failure.
Cronobacter spp. are opportunistic pathogens associated with serious infections in neonates. The increased stress tolerance, including thermoresistance, of some Cronobacter strains can promote their survival in production facilities and thus raise the possibility of contamination of dried infant milk formula, which has been identified as a potential source of infection. In this study, we characterized a DNA region which is present in some Cronobacter strains and which contributes to their prolonged survival at 58°C. The 18 kbp long region containing 22 open reading frames was sequenced in Cronobacter sakazakii ATCC 29544. The major feature of the region contained a cluster of conserved genes, most of them having significant homologies with bacterial proteins involved in some type of stress response, including heat, oxidation and acid stress. The same thermoresistance DNA region was detected in strains belonging to the genera Cronobacter, Enterobacter, Citrobacter and Escherichia and its presence positively correlated with increased thermotolerance.
Abstract.BACKGROUND: Salivary markers of oxidative stress and antioxidant status represent promising tool for the research of oral diseases. One of the criteria is the validation of these biomarkers from the perspective of the confounding and modifying factors. AIM: To examine the effect of circadian rhythm, tooth-brushing and ascorbic acid treatment on selected salivary markers of oxidative and carbonyl stress, and antioxidant status. SUBJECTS AND METHODS: Whole unstimulated saliva samples were collected from 19 healthy participants three times during a day, before and after tooth-brushing, and before and after the administration of vitamin C (250 mg). Advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGEs), ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) were measured. RESULTS: Salivary AGEs levels varied significantly during the day (p < 0.05) with the highest concentrations in the morning. FRAP levels varied during the day (p < 0.01) with the highest concentrations in the afternoon. Tooth-brushing decreased AGEs (p < 0.05) and TBARS levels (p < 0.01) and increased FRAP levels (p < 0.05). Single intake of vitamin C significantly decreased AGEs (p < 0.001) and increased both FRAP (p < 0.01) and TAC (p < 0.01) concentrations. CONCLUSION: Significant daily variations were observed in salivary AGEs and FRAP levels. Tooth-brushing and treatment with vitamin C decreased carbonyl stress and increased the antioxidant status. These results are important from the perspective of using saliva for the research of oral diseases.
Salivary thiobarbituric acid-reacting substances are associated with periodontitis at least on a population level. Sex-specific causes of lipid peroxidation might point towards different pathogenic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.