Following a request from the European Commission, EFSA developed an updated scientific guidance to assist applicants in the preparation of applications for food enzymes. This guidance describes the scientific data to be included in applications for the authorisation of food enzymes, as well as for the extension of use for existing authorisations, in accordance with Regulation ( EC ) No 1331/2008 and its implementing rules. Information to be provided in applications relates to source, production and characteristics of the food enzyme, toxicological data, allergenicity and dietary exposure estimation. Source, production and characteristics of the food enzyme are first considered only for enzymes of microbial origin and subsequently for those enzymes derived from plants and for enzymes from animal sources. Finally, the data requested for toxicology, allergenicity and dietary exposure applies to all food enzymes independent of the source. On the basis of the submitted data, EFSA will assess the safety of food enzymes and conclude whether or not they present a risk to human health under the proposed conditions of use.
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of silicon dioxide (E 551) when used as a food additive. The forms of synthetic amorphous silica (SAS) used as E 551 include fumed silica and hydrated silica (precipitated silica, silica gel and hydrous silica). The Scientific Committee on Food (SCF) established a group acceptable daily intake (ADI) 'not specified' for silicon dioxide and silicates. SAS materials used in the available biological and toxicological studies were different in their physicochemical properties; their characteristics were not always described in sufficient detail. Silicon dioxide appears to be poorly absorbed. However, silicon-containing material (in some cases presumed to be silicon dioxide) was found in some tissues. Despite the limitations in the subchronic, reproductive and developmental toxicological studies, including studies with nano silicon dioxide, there was no indication of adverse effects. E 551 does not raise a concern with respect to genotoxicity. In the absence of a long-term study with nano silicon dioxide, the Panel could not extrapolate the results from the available chronic study with a material, which does not cover the full-size range of the nanoparticles that could be present in the food additive E 551, to a material complying with the current specifications for E 551. These specifications do not exclude the presence of nanoparticles. The highest exposure estimates were at least one order of magnitude lower than the no observed adverse effect levels (NOAELs) identified (the highest doses tested). The Panel concluded that the EU specifications are insufficient to adequately characterise the food additive E 551. Clear characterisation of particle size distribution is required. Based on the available database, there was no indication for toxicity of E 551 at the reported uses and use levels. Because of the limitations in the available database, the Panel was unable to confirm the current ADI 'not specified'. The Panel recommended some modifications of the EU specifications for E 551.
According to world statistics, dogs and cats are the species that owners most frequently seek assistance with potential poisonings, accounting 95–98% of all reported animal cases. Exposures occur more commonly in the summer and in December that is associated with the holiday season. The majority (>90%) of animal poisonings are accidental and acute in nature and occur near or at the animal owner's home. Feeding human foodstuff to pets may also prove dangerous for their health.The aim of this review was to present common food items that should not be fed (intentionally or unintentionally) to dogs, i.e. chocolate, caffeine, and other methylxanthines, grapes, raisins, onion, garlic, avocado, alcohol, nuts, xylitol contained in chewing gum and candies, etc. Onion and avocado are toxic for cats, too. The clinical effects of individual toxicants and possible therapy are also mentioned. Knowing what human food has the potential to be involved in serious toxicoses should allow veterinarians to better educate their clients on means of preventing pet poisonings.It can be concluded that the best advice must surely be to give animal fodder or treats specifically developed for their diets.
There is an increasing need for rapid and easily interpreted in vitro assays to screen for possible cytotoxicity of pesticides. The objective of this study was to investigate the effect of the carbamate insecticide bendiocarb on mammalian and insect cell cultures. The cytotoxicity of this insecticide was evaluated by cell proliferation and cellular damage was assessed by evaluation of the cytopathic effect and lactate dehydrogenase (LDH) leakage. Cells of insect origin (Sf21) were the most sensitive to bendiocarb with significant (P < 0.01) suppression of their proliferative activity ranging from 10(-1)-10(-5) M. However, significant suppression of proliferative activity was also recorded in rat liver cells (WBF344; 10(-1)-10(-3) M; P < 0.01-0.05) and rabbit kidney cells (RK13; 10(-1) M; P < 0.01). In contrast with the proliferation activity of cells, a cytopathic effect based on cellular damage and LDH leakage into the medium was observed only at the highest concentration (10(-1) M) in RK 13 and WBF344 cells, but not in the Sf21 insect cell line. Our results indicate that bendiocarb exposure caused a cell-type dependent decrease in cell proliferation; however, cell damage and LDH leakage into the medium were not present or were strongly limited, dependent on the cell phenotype. Cell proliferation was shown as a sensitive indicator for evaluation of the cytotoxic effect of bendiocarb in vitro; on the other hand, microscopic signs of cellular damage and LDH leakage were insufficient in vitro markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.