It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft R II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.
In recent years the association between video games, cognition, and the brain has been actively investigated. However, it is still unclear how individual predispositions, such as brain structure characteristics, play a role in the process of acquiring new skills, such as video games. The aim of this preliminary study was to investigate whether acquisition of cognitive-motor skills from the real-time strategy video game (StarCraft II) is associated with pre-training measures of brain white matter integrity. Results show that higher white matter integrity in regions (anterior limb of internal capsule, cingulum/hippocampus) and tracts (inferior longitudinal fasciculus) related with motoric functions, set shifting and visual decision making was associated with better Star Craft II performance. The presented findings inline with previous results and suggest that structural brain predispositions of individuals are related to the video game skill acquisition. Our study highlights the importance of neuroimaging studies that focus on white matter in predicting the outcomes of intervention studies and has implications for understanding the neural basis of the skill learning process.
Recent meta-analyses and meta-analytic reviews of most common approaches to cognitive training broadly converge on describing a lack of transfer effects past the trained task. This also extends to the more recent attempts at using video games to improve cognitive abilities, bringing into question if they have any true effects on cognitive functioning at all. Despite this, video game training studies are slowly beginning to accumulate and provide evidence of replicable improvements. Our study aimed to train non-video game playing individuals in the real-time strategy video game StarCraft II in order to observe any subsequent changes to perceptual, attentional, and executive functioning. Thirty hours of StarCraft II training resulted in improvements to perceptual and attentional abilities, but not executive functioning. This pattern of results is in line with previous research on the more frequently investigated “action” video games. By splitting the StarCraft II training group into two conditions of “fixed” and “variable” training, we were also able to demonstrate that manipulating the video game environment produces measurable differences in the amount of cognitive improvement. Lastly, by extracting in-game behavior features from recordings of each participant’s gameplay, we were able to show a direct correlation between in-game behavior change and cognitive performance change after training. These findings highlight and support the growing trend of more finely detailed and methodologically rigorous approaches to studying the relationship between video games and cognitive functioning.
Background and aimsEven though the Compulsive Sexual Behavior Disorder (CSBD) was added to the ICD-11 under the impulse control category in 2019, its neural mechanisms are still debated. Researchers have noted its similarity both to addiction and to Obssesive-Compulsive Disorder (OCD). The aim of our study was to address this question by investigating the pattern of anatomical brain abnormalities among CSBD patients.MethodsReviewing 39 publications on Diffusion Tensor Imaging (DTI) we have identified main abnormalities specific for addictions and OCD. Than we have collected DTI data from 36 heterosexual males diagnosed with CSBD and 31 matched healthy controls. These results were then compared to the addiction and OCD patterns.ResultsCompared to controls, CSBD individuals showed significant fractional anisotropy (FA) reduction in the superior corona radiata tract, the internal capsule tract, cerebellar tracts and occipital gyrus white matter. Interestingly, all these regions were also identified in previous studies as shared DTI correlates in both OCD and addiction.Discussion and conclusionsResults of our study suggest that CSBD shares similar pattern of abnormalities with both OCD and addiction. As one of the first DTI study comparing structural brain differences between CSBD, addictions and OCD, although it reveals new aspects of CSBD, it is insufficient to determine whether CSBD resembles more an addiction or OCD. Further research, especially comparing directly individuals with all three disorders may provide more conclusive results.
It is known that the outcomes of complex video game (VG) skill acquisition are correlated with individual differences in demographic and behavioral variables, such as age, intelligence and visual attention. However, empirical studies of the relationship between neuroanatomical features and success in VG training have been few and far between. The present review summarizes existing literature on gray matter (GM) and white matter correlates of complex VG skill acquisition as well as explores its relationship with neuroplasticity. In particular, since age can be an important factor in the acquisition of new cognitive skills, we present studies that compare different age groups (young and old adults). Our review reveals that GM in subcortical brain areas predicts complex VG learning outcomes in young subjects, whereas in older subjects the same is true of cortical frontal areas. This may be linked to age-related compensatory mechanisms in the frontal areas, as proposed by The Scaffolding Theory of Aging and Cognition. In the case of plasticity, there is no such relationship – in the group of younger and older adults there are changes after training in both cortical and subcortical areas. We also summarize best practices in research on predictors of VG training performance and outline promising areas of research in the study of complex video game skill acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.