Understanding the detailed electronic structure of transition metal ions is essential in numerous areas of inorganic chemistry. In particular, the ability to map out the many particle d-d spectrum of a transition metal catalyst is key to understanding and predicting reactivity. However, from a practical perspective, there are often experimental limitations on the ability to determine the energetic ordering, and multiplicity of all the excited states. These limitations derive in part from parity and spin-selection rules, as well as from the limited energy range of many standard laboratory instruments. Herein, we demonstrate the ability of 2p3d resonant inelastic X-ray scattering (RIXS) to obtain detailed insights into the many particle spectrum of simple inorganic molecular iron complexes. The present study focuses on low-spin ferrous and ferric iron complexes, including [Fe(tacn)] and [Fe(CN)]. This series thus allows us to assess the contribution of d-count and ligand donor type, by comparing the purely σ-donating tacn ligand to the π-accepting cyanide. In order to highlight the conceptual difference between RIXS and traditional optical spectroscopy, we compare first RIXS results with UV-vis and magnetic circular dichroism spectroscopy. We then highlight the ability of 2p3d RIXS to (1) separate d-d transitions from charge transfer transitions and (2) to determine the many particle d-d spectrum over a much wider energy range than is possible by optical spectroscopy. Our experimental results are correlated with semiempirical multiplet simulations and ab initio complete active space self-consistent field calculations in order to obtain detailed assignments of the excited states. These results show that Δ S = 1, and possibly Δ S = 2, transitions may be observed in 2p3d RIXS spectra. Hence, this methodology has great promise for future applications in all areas of transition metal inorganic chemistry.
Axial coordination in nickel(II) porphyrins has been thoroughly investigated and is well understood. However, isolated five-coordinate nickel(II) porphyrins are still elusive after 50 years of intense research, even though they play a crucial role as intermediates in enzymes and catalysts. Herein we present the first fully stable, thoroughly characterized five-coordinate nickel(II) porphyrin in solution and in the solid state (crystal structure). The spectroscopic properties indicate pure high-spin behavior (S = 1). There are distinct differences in the NMR, UV−vis, and redox behavior compared to those of high-spin six-coordinate [with two axial ligands, such as NiTPPF 10 •(py) 2 ] and low-spin fourcoordinate (NiTPPF 10 ) nickel(II) porphyrins. The title compound, a strapped nickel(II) porphyrin, allows a direct comparison of four-, five-, and six-coordinate nickel(II) porphyrins, depending on the environment. With this reference in hand, previous results were reevaluated, for example, the switching efficiencies and thermodynamic data of nickel(II) porphyrin-based spin switches in solution.
[Ru(Me3[9]aneN3)(bpy)(NO)](BF4)2 ([1](BF4)2) was explored by single-crystal X-ray diffractometry, leading to the first crystal structure of an octahedral {RuNO}(7) complex. The metal resides on the center of a distorted octahedron, with dN-O and ∠Ru-N-O at 1.177(3) Å and 141.6(2)°, respectively. [1](BF4)2 can be stored indefinitely under argon. Solutions of [1](2+) show no signs of decomposition when protected from air and light. The electron paramagnetic resonance X-band spectrum at 85 K in vitrified acetonitrile (MeCN) shows signals consistent with an S = (1)/2 spin state, better described as Ru(II)NO(•) (g = [2.030, 1.993, 1.880] and A = [11.0, 30.4, 3.9]/10(-4) cm(-1)). In water, the {RuNO}(7) species reacts with O2 in a 1:4 stoichiometry. The reaction is first-order in both reactants with k = (1.9 ± 0.2) M(-1) s(-1) at 25 °C (ΔH(⧧) = 11.5 ± 0.3 kJ mol(-1); ΔS(⧧) = -189 ± 1 J K(-1) mol(-1)). Solutions of [1](2+) evolve NO when irradiated a 365 nm with ϕNO = 0.024 and 0.090 mol einstein(-1) in H2O and MeCN, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.