This work reports the preparation of a new 6-coordinated nitrosyl compound and its use as a model to explore the redox and acid-base properties of the three redox states of bound nitrosyl (formally NO(+), NO(•), NO(-)/HNO) in {RuNO}(6,7,8) species. We prepared the octahedral {RuNO}(6) complex [Ru(Me3[9]aneN3)(bpy)(NO)](3+) (Me3[9]aneN3: 1,4,7-trimethyl-1,4,7-triazacyclononane; bpy = 2,2'-bipyridine), and the related [Ru(Me3[9]aneN3)(bpy)(NO2)](+) nitro derivative. The compounds were characterized by chemical analysis, X-ray diffraction, NMR, IR, and UV-vis spectroscopies, cyclic voltammetry (CV), UV-vis/IR spectroelectrochemistry, and theoretical calculations (DFT, (TD)DFT). The reaction kinetics between the {RuNO}(6) complex and the nucleophile OH(-) is also presented. The incorporation of tridentate and bidentate ligands in the coordination sphere prevents labilization issues associated with the trans effect when attaining the reduced states of the nitrosyl group. This allows for a consistent interpretation of the changes in the main geometrical parameters: Ru-N and N-O distances, Ru-N-O angle, and the νNO frequency and electronic transitions. We explore the redox properties in acetonitrile and aqueous solutions, and provide a potential (E1/2) - pH (Pourbaix) diagram for the three diatomic nitrosyl-bound species, as well as for HNO and NO2(-), including the report of the pKa of the [Ru(Me3[9]aneN3)(bpy)(HNO)](2+) ion, 9.78 ± 0.15 at 25.0 °C.
[Ru(Me3[9]aneN3)(bpy)(NO)](BF4)2 ([1](BF4)2) was explored by single-crystal X-ray diffractometry, leading to the first crystal structure of an octahedral {RuNO}(7) complex. The metal resides on the center of a distorted octahedron, with dN-O and ∠Ru-N-O at 1.177(3) Å and 141.6(2)°, respectively. [1](BF4)2 can be stored indefinitely under argon. Solutions of [1](2+) show no signs of decomposition when protected from air and light. The electron paramagnetic resonance X-band spectrum at 85 K in vitrified acetonitrile (MeCN) shows signals consistent with an S = (1)/2 spin state, better described as Ru(II)NO(•) (g = [2.030, 1.993, 1.880] and A = [11.0, 30.4, 3.9]/10(-4) cm(-1)). In water, the {RuNO}(7) species reacts with O2 in a 1:4 stoichiometry. The reaction is first-order in both reactants with k = (1.9 ± 0.2) M(-1) s(-1) at 25 °C (ΔH(⧧) = 11.5 ± 0.3 kJ mol(-1); ΔS(⧧) = -189 ± 1 J K(-1) mol(-1)). Solutions of [1](2+) evolve NO when irradiated a 365 nm with ϕNO = 0.024 and 0.090 mol einstein(-1) in H2O and MeCN, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.