Since 2007, African swine fever (ASF) has posed a serious threat to the European swine industry. In Poland, the numbers of reported outbreaks in pigs and affected areas grow every year. In 2018, the disease was noted in Western Europe, in Belgium specifically, where several hundred infected wild boars have been detected so far. In 2018, the virus unexpectedly emerged in pig holdings in eastern China, northern Mongolia, Vietnam, and Cambodia, causing worldwide concern about its further spread. Since there is still no vaccine available, the only approach to control the disease is biosecurity. Identification of potential sources of the virus is extremely important in light of its phenomenal survivability. The review summarises the current knowledge about ASFV survivability and resistance to environmental conditions, and discusses the role of indirect contact in spreading the disease.
The African swine fever epidemic occurred in Poland at the beginning of 2014 and, up to date, the disease has been spreading mainly in the eastern part of the country. Unexpectedly, in November 2019 an infected wild boar case was confirmed in Lubuskie voivodship in western Poland. During the following weeks, several dozen African swine fever virus (ASFV)-positive animals were notified in the neighboring area, causing severe concern regarding further spread of the disease to the mostly pig-dense region in Poland, namely, Wielkopolskie voivodship. Moreover, almost a year after, several infected wild boar cases were confirmed for the first time in Germany, just beyond the Polish border, sending out a shock wave through the global pig market. The whole genome sequence of ASFV, isolated from the first case of ASF in western Poland, and three selected viruses from other affected areas, revealed the tandem repeat and single nucleotide polymorphism (SNP) variations in reference to the Georgia 2007/1 strain. These data, supported by the conventional sequencing of selected genomic regions from a total of 154 virus samples isolated between 2017 and 2020 in Poland, shed a new light on pathogen epidemiology. The sequence variations within the O174L gene detected in this study showed that cases identified in western Poland might be originating from the so-called southern Warsaw cluster. Moreover, the viruses originating from the northern Warsaw cluster do not possess single nucleotide polymorphism (SNP) mutations within the K145R and MGF 505-5R genes, which are specific to all of the other Polish ASFV strains. These results led to a conclusion of their distinct origin. Supporting these results, the nucleotide sequencing of I73R/I329L intergenic region revealed its new, previously undescribed variant, called IGR IV, with an additional three tandem repeats of 10 nucleotides in comparison to the reference sequence of the Georgia 2007/1 strain.
African swine fever (ASF) causes huge economic losses and is one of most dangerous diseases of pigs. The disease is known for almost 100 years, an effective vaccine or treatment is still unavailable, only proper biosecurity measures, including disinfection, are being applied, in order to prevent disease outbreaks. Eight active substances, i.e., formaldehyde, sodium hypochlorite, caustic soda, glutaraldehyde, phenol, benzalkonium chloride, potassium peroxymonosulfate and acetic acid, were tested, in order to confirm their effectiveness against African swine fever virus (ASFV). This specific selection was done based on the World Organisation for Animal Health (OIE)’s recommendation and previous disinfectant studies on surfaces. The result of our study shows that most of them inactivate the virus, in recommended concentrations. In order to reduce the cytotoxicity of the four substances, Microspin S-400 HR columns were applied, therefore making it possible to demonstrate four logarithms virus titer reduction. Sodium hypochlorite, glutaraldehyde, caustic soda and potassium peroxymonosulfate showed the best ASFV inactivation rates, achieving titer reductions over 5 logs. Despite microfiltration, the virucidal activity of formaldehyde was not assessable, due to its high cytotoxicity. Our results showed that cleaning is particularly important, because removal of the soiling provides improved effectiveness of the tested chemical compounds.
African swine fever (ASF) is a contagious, notifiable viral disease, which is considered a significant threat not only for European, but also for worldwide pork production, since recently the virus emerged within numerous Chinese pig herds. The disease was introduced in Poland in 2014 and up to the end of 2018, 213 outbreaks in pigs and 3347 cases in wild boars have been reported. The presented study describes the whole genome sequencing of seven Polish isolates, collected between 2016 and 2017, using next generation sequencing (NGS) technology. The complete, genomic sequences of these isolates were compared against five other closely related ASFV genomes, annotated in the NCBI database. The obtained sequences were from 189.393 to 189.405 bp long and encoded 187–190 open reading frames (ORFs). The isolates were grouped within genotype II and showed 99.941 to 99.956% nucleotide identity to the Georgia 2007/1 reference strain.
This paper was aimed to characterize clinical signs and pathomorphological lesions in twenty-two pigs, infected intranasally by different doses of African swine fever virus (Pol18_28298_O111), isolated during the outbreak in a pig farm that occurred in Eastern Poland throughout 2018. This article also attempts to indicate risk, related to virus load and shedding, and present possible difficulties with proper disease recognition at the farm level. The results revealed that even a very low dose (5 HAU) may initiate the infection. Various forms of the disease (acute, subacute, and chronic), mainly with prodromal clinical signs like fever, apathy, and reduced feed intake were observed. The most frequently observed lesions (82%) were: hyperemia and enlargement of lymph nodes and splenomegaly. The minimal incubation period was estimated at five days post-infection (dpi). Mortality ranged from 80–100%. Two pigs survived the infection. Some viremic animals presented delayed fever. In some cases, the fever was not detectable. Shortly after viremia, the virus was secreted ion the urine, feces, and saliva. The highest levels of virus were found in the internal organs and blood; however in the case of one pig (chronic form), viral DNA was not detected in the spleen, liver, bone marrow, and brain. Veterinary diagnosis may be difficult, and the final results should always be based on laboratory investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.