Daily snow depth (SD) and snow cover extent around 820 stations are used to analyse variations in snow cover characteristics in Northern Eurasia, a region that encompasses the Russian Federation. These analyses employ nearly five times more stations than in the previous studies and temporally span forty years. A representative judgement on the changes of snow depth over most of Russia is presented here for the first time. The number of days with greater than 50% of the near-station territory covered with snow, and the number of days with the snow depth greater than 1.0 cm, are used to characterize the duration of snow cover (SCD) season. Linear trends of the number of days and snow depth are calculated for each station from 1966 to 2007. This investigation reveals regional features in the change of snow cover characteristics. A decrease in the duration of snow cover is demonstrated in the northern regions of European Russia and in the mountainous regions of southern Siberia. An increase in SCD is found in Yakutia and in the Far East. In the western half of the Russian Federation, the winter-averaged SD is shown to increase, with the maximum trends being observed in Northern West Siberia. In contrast, in the mountainous regions of southern Siberia, the maximum SD decreases as the SCD decreases. While both snow cover characteristics (SCD and SD) play an important role in the hydrological cycle, ecosystems dynamics and societal wellbeing are quite different roles and the differences in their systematic changes (up to differences in the signs of changes) deserve further attention.
Current snow state descriptions and estimates of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) up to 2010 have been recorded from 958 meteorological stations in Russia. Apart from the description of long-term averages of snow characteristics, the estimates of their change that are averaged over quasi-homogeneous climatic regions are derived and regional differences in the change of snow characteristics are studied. In recent decades, the Russian territory has experienced an increase in snow depth, both winter average and maximum snow depths, against the background of global temperature rise and sea ice reduction in the northern hemisphere. The first generalized regional characteristics of maximum snow water equivalent in the winter season have been obtained. According to field observations, an increase in water supply has been revealed in the north of the East European Plain, in the western part by 4.5% (10 yr) −1 and in the eastern part by 6% (10 yr) −1 . This characteristic also increases by ∼6% (10 yr) −1 in the southern forest zone of Western Siberia and in the Far East. Snow water equivalent in central Eastern Siberia increases by 3.4% (10 yr) −1 . From snow course observations in the forest, a tendency for a decrease in water supply (−6.4% (10 yr) −1 is only found in the southwest of the East European Plain. Snow cover characteristics, being a product of several climate-forming factors that simultaneously affected them, change nonlinearly and different characteristics may and often do change differently with time. Therefore, one cannot assume that having information about the trend of one of the snow characteristics implies knowledge of the trend sign of others. In particular, whilst during the past four decades over the Russian Federation most snow cover characteristics-including the most important of them responsible for water supply-have increased, the only quantity that is reliably monitored from space (snow cover extent) has decreased, but in the last two decades this decrease has ceased. These tendencies are opposite to those observed in Canada and Alaska.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2019 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.