RESUMoO alongamento é amplamente utilizado na prática clínica da fisioterapia e no desporto, porém, as alterações mecânicas que essa técnica gera no músculo esquelético são pouco exploradas cientificamente. Este estudo avaliou as alterações mecânicas que acometem o músculo gastrocnêmio de ratas Wistar, adultas jovens, após 14 dias de imobilização e, secundariamente, submetido a alongamento manual passivo por 10 dias consecutivos, aplicado uma ou duas vezes ao dia. Foram utilizados 50 animais, sendo 10 para cada grupo: Controle (GC); Imobilizado (GI); Imobilizado e Liberado (GIL); Imobilizado e alongado uma vez ao dia (GIA1); e Imobilizado e alongado duas vezes ao dia (GIA2). O músculo gastrocnêmio foi submetido ao ensaio mecânico de tração, onde foram avaliadas as propriedades de carga e alongamento nos limites máximo e proporcional, além de rigidez e resiliência. A imobilização reduziu os valores das propriedades mecânicas de carga no limite máximo (CLM), carga no limite proporcional (CLP), alongamento no limite máximo (ALM), rigidez e resiliência, em 44,4%, 34,4%, 27,6%, 64,4% e 54%, respectivamente, quando comparados com os valores do GC. A remobilização livre e o alongamento restauraram as propriedades de CLM, CLP, ALM, rigidez e resiliência do músculo, exceto para o GIA2, que foi incapaz de restabelecer a propriedade de ALM (31,3% menor que GC). Concluí-se, portanto que, após 14 dias de imobilização segmentar, cargas individuais de alongamento e a livre movimentação permitem restituir as propriedades mecânicas do tecido muscular.Palavras-chave: imobilização, músculo esquelético, estresse mecânico, exercício. aBStRaCtStretching is widely employed in physiotherapeutic clinical practice and in sportive activities; however, the mechanical alterations of the skeletal muscle generated by this technique are poorly scientifically investigated. This study evaluated the mechanical alterations suffered by the gastrocnemius muscle of young adult female Wistar rats, submitted to14 days of immobilization followed by passive manual stretching during 10 consecutive days once or twice a day. Fifty animals were equally distributed in five groups, Control (CG); Immobilized (IG); Immobilized and liberated (ILG); Immobilized and submitted to stretching once a day (IEG1); Immobilized and submitted to stretching twice a day (IEG2). The gastrocnemius muscle was analyzed by mechanical traction assay and the properties related to load and maximal and proportional stretching evaluated in addition to stiffness and resilience. Immobilization decreased load at maximal thresholds (MTL), load at proportional thresholds (LPT), stretch at maximal thresholds (SMT), stiffness and resilience were reduced in 44.4%, 34.4%, 27.6%, 64.4% and 54% respectively, compared to CG values. With subsequent free remobilization and stretching, all parameters were restored except for IEG2 in which SMT remained reduced in 31.3%, when compared to CG. It is concluded that after 14 days of segmental immobilization, individual stretching loads and free movements c...
Introduction: Considering the reduction of physical activity performed daily in people with spinal cord injury, it is necessary to analyze the interventions based on physical exercises in order to provide recommendations based on evidence. Objectives: To review and evaluate the literature on physical exercise interventions for individuals with SCI, based on the International Classification of Functioning, Disability and Health, as well as physiological parameters for exercise prescription. Method: A systematic review of the literature produced from August 2016 to February 2017 within the PubMed, Embase, Cochrane Library, and MEDLINE databases. Results: Two independent examiners conducted a search in which 223 articles were initially found. A third evaluator verified possible divergences and generated a final list of 25 articles that strictly met the inclusion criteria, 5 of which investigated the effects of aerobic exercise, 2 of resistance training, 2 of balance training, 12 of gait training, and 4 evaluating the combined effect of 2 or more forms of training. Conclusion: Considering studies classified as of high and moderate quality of evidence, positive effects were observed in the domains of structures and functions, in aerobic, resistance training and combined exercises, and in some studies with gait training. In the domain of activities and participation, positive effects were observed in the studies with gait training, balance training, and combined interventions.
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trainedimmobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Introduction: Mechanical properties (MP) are clinically applicable tools for healthcare professionals working on the musculoskeletal system. Objectives: The aim of this study was to evaluate two protocols of neuromuscular electric stimulation (NMES) to improve MP regeneration of the myotendinous complex after segment immobilization in female rats. Materials and Methods: Fifty animals were equally distributed into five groups: Control (CG, n=10); Immobilized (IG, n=10); Immobilized and freely remobilized (IFG, n=10); Immobilized and NMES once /day (IEG1, n=10); Immobilized and MNES twice/day (IEG2, n=10). Immobilization was kept for 14 days, and remobilization was subsequently released for 10 days. NMES was applied for 10 days, post-immobilization, every morning for 10 minutes to IEG1 animals and every morning and afternoon (total 20 minutes) to the IEG2 group. After these procedures, the gastrocnemius muscle was submitted to the mechanical traction assay to evaluate stiffness, resilience, load and stretching at maximum limit MPs. Results: Immobilization reduced the MP values concerning load and stiffness (p<0.05). Results for NMES applied twice a day were less satisfactory than the ones obtained with one application or in the remobilized group (p> 0.05). Conclusion: It is concluded that the gastrocnemius muscle became structurally better organized through a single NMES application and by remobilization.
For trained individuals with chronic SCIs, classified "A" according to the American Spinal Injury Association (ASIA), an ABT program did not significantly affect the scores of the scales used to assess quality of life (SF-36) and functional independence (FIM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.