The observation of magnetic interaction at the interface between nonmagnetic oxides has attracted much attention in recent years. In this report, we show that the Kondo-like scattering at the SrTiO3-based conducting interface is enhanced by increasing the lattice mismatch and growth oxygen pressure PO2. For the 26-unit-cell LaAlO3/SrTiO3 (LAO/STO) interface with lattice mismatch being 3.0%, the Kondo-like scattering is observed when PO2 is beyond 1 mTorr. By contrast, when the lattice mismatch is reduced to 1.0% at the (La0.3Sr0.7)(Al0.65Ta0.35)O3/SrTiO3 (LSAT/STO) interface, the metallic state is always preserved up to PO2 of 100 mTorr. The data from Hall measurement and X-ray absorption near edge structure (XANES) spectroscopy reveal that the larger amount of localized Ti3+ ions are formed at the LAO/STO interface compared to LSAT/STO. Those localized Ti3+ ions with unpaired electrons can be spin-polarized to scatter mobile electrons, responsible for the Kondo-like scattering observed at the LAO/STO interface.
In this work, multifunctional oxide NdNiO (NNO) thin films grown on a SrTiO (STO) substrate using pulsed-laser deposition are studied. Temperature dependent resistivity measurements revealed that NNO/STO samples exhibit a sharp thickness dependent metal-insulator transition (MIT) over a range of 150-200 K. It is known that the electronic properties of correlated oxides are extremely complex and sensitive to changes in orbital occupancy. To evaluate the changes in the electronic and/or crystallographic structure responsible for the MIT, a site-selective (O, Ni and Nd) X-ray absorption near edge structure (XANES) analysis is performed above and below the transition temperature. Analysis of XANES spectra suggests that: (i) in NNO films nominally trivalent Ni ions exhibit multiple valency (bond disproportionation), (ii) intermetallic hybridization plays an important role, (iii) the presence of strong O 2p-O 2p hole correlation at low temperature results in the opening of the p-p gap and (iv) the valency of Nd ions matches well with that of Nd. For NNO films exhibiting a sharp MIT, Ni 3d electron localization and concurrent existence of Ni 3d and Ni 3dL[combining low line] states are responsible for the observed transition. At temperatures below the MIT the O 2p-O 2p hole correlation is strong enough to split the O 2p band stabilizing insulating phase. Temperature and thickness dependent differences observed in the site-selective XANES data are discussed in terms of possible mechanisms for the MIT (negative charge-transfer type).
Monodisperse Co, Fe, and FeCo nanoparticles are prepared via thermal decomposition of metal carbonyls in the presence of aluminium alkyls, yielding air-stable magnetic metal nanoparticles after surface passivation. The particles are characterized by electron microscopy (SEM, TEM, ESI), electron spectroscopy (MIES, UPS, and XPS) and x-ray absorption spectroscopy (EXAFS). The particles are peptized by surfactants to form stable magnetic fluids in various organic media and water, exhibiting a high volume concentration and a high saturation magnetization. In view of potential biomedical applications of the particles, several procedures for surface modification are presented, including peptization by functional organic molecules, silanization, and in situ polymerization.
A three-way catalyst (TWC) that concurrently converts three harmful gases, carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NO x ) is an absolutely essential technique for the sustainable society. Rh has been an essential element in TWC because only Rh is able to efficiently catalytically reduce NO x . [1,2] However, since Rh is scarce metal and its price is very fluctuating, significant efforts have been made to develop alternative TWC catalysts to Rh. Nevertheless, Rh is still irreplaceable, and nowadays, the price of Rh marked an all-time record high.Recently, new alloys of a solid-solution type have been developed as nanoparticles (NPs) and have attracted much attention because some alloys exhibit innovative Since 1970, people have been making every endeavor to reduce toxic emissions from automobiles. After the development of a three-way catalyst (TWC) that concurrently converts three harmful gases, carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NO x ), Rh became an essential element in automobile technology because only Rh works efficiently for catalytic NO x reduction. However, due to the sharp price spike in 2007, numerous efforts have been made to replace Rh in TWCs. Nevertheless, Rh remains irreplaceable, and now, the price of Rh is increasing significantly again. Here, it is demonstrated that PdRuM ternary solid-solution alloy nanoparticles (NPs) exhibit highly durable and active TWC performance, which will result in a significant reduction in catalyst cost compared to Rh. This work provides insights into the design of highly durable and efficient functional alloy NPs, guiding how to best take advantage of the configurational entropy in addition to the mixing enthalpy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.