SUMMARY Production of new neurons in the adult hippocampus decreases with age; this decline may underlie age-related cognitive impairment. Here we show that continuous depletion of the neural stem cell pool as a consequence of their division may contribute to the age-related decrease in hippocampal neurogenesis. Our results indicate that adult hippocampal stem cells, upon exiting their quiescent state, rapidly undergo a series of asymmetric divisions to produce dividing progeny destined to become neurons and subsequently convert into mature astrocytes. Thus, the decrease in the number of neural stem cells is a division-coupled process and is directly related to their production of new neurons. We present a scheme of the neurogenesis cascade in the adult hippocampus that includes a proposed “disposable stem cell” model and accounts for the disappearance of hippocampal neural stem cells, the appearance of new astrocytes, and the age-related decline in the production of new neurons.
Arrest of cell division is a prerequisite for cells to enter a program of terminal differentiation. Mitogenesis and cytostasis of neuronal cell precursors can be induced by the same or by different growth or trophic factors. Response of PC12 cells to nerve growth factor (NGF) involves a proliferative phase that is followed by growth arrest and differentiation. Here we present evidence that the cytostatic effect of NGF is mediated by nitric oxide (NO), a second messenger molecule with both para- and autocrine properties that can diffuse freely and act within a restricted volume. We show that NGF induces different forms of nitric oxide synthase (NOS) in neuronal cells, that nitric oxide (NO) acts as a cytostatic agent in these cells, that inhibition of NOS leads to reversal of NGF-induced cytostasis and thereby prevents full differentiation, and that capacity of a mutant cell line to differentiate can be rescued by exogenous NO. We suggest that induction of NOS is an important step in the commitment of neuronal precursors and that NOS serves as a growth arrest gene, initiating the switch to cytostasis during differentiation.
Cell division and subsequent programmed cell death in imaginal discs of Drosophila larvae determine the final size of organs and structures of the adult fly. We show here that nitric oxide (NO) is involved in controlling the size of body structures during Drosophila development. We have found that NO synthase (NOS) is expressed at high levels in developing imaginal discs. Inhibition of NOS in larvae causes hypertrophy of organs and their segments in adult flies, whereas ectopic expression of NOS in larvae has the opposite effect. Blocking apoptosis in eye imaginal discs unmasks surplus cell proliferation and results in an increase in the number of ommatidia and component cells of individual ommatidia. These results argue that NO acts as an antiproliferative agent during Drosophila development, controlling the balance between cell proliferation and cell differentiation.
Nitric oxide (NO) is a short-lived, highly reactive gas, which has been identified as a mediator in vasodilation, an active agent in macrophage cytotoxicity and neurotoxicity, and a neuro-transmitter in the central and peripheral nervous systems. Production of NO by neurons is critical for facilitated synaptic transmission in models of synaptic plasticity such as long-term potentiation and long-term depression, suggesting a role for NO as a retrograde messenger that could complete a hypothetical feedback loop by strengthening the connection between postsynaptic and presynaptic cells. We report here that although alone NO has no evident effect on transcription, it can act as an amplifier of calcium signals in neuronal cells. NO and Ca2+ action have to coincide in time for amplification to occur. Experiments with a series of simplified reporter genes in combination with specific recombinant protein kinase inhibitors suggest that induction of gene activity following NO-amplified calcium action involves protein kinase A-dependent activation of the transcription factor CREB.
Mechanisms controlling the transition of a neural precursor cell from proliferation to differentiation during brain development determine the distinct anatomical features of the brain. Nitric oxide (NO) may mediate such a transition, because it can suppress DNA synthesis and cell proliferation. We cloned the gene encoding the neuronal isoform of Xenopus NO synthase (XNOS) and found that in the developing brain of Xenopus tadpoles, a zone of XNOS-expressing cells lies adjacent to the zone of dividing neuronal precursors. Exogenous NO, supplied to the tadpole brain in vivo, decreased the number of proliferating cells and the total number of cells in the optic tectum. Conversely, inhibition of NOS activity in vivo increased the number of proliferating cells and the total number of cells in the optic tectum. NOS inhibition yielded larger brains with grossly perturbed organization. Our results indicate that NO is an essential negative regulator of neuronal precursor proliferation during vertebrate brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.