We investigated whether knocking down AR expression effects apoptosis after treatment with different apoptosis-inducing agents. We found that siRNA AR (si-AR) significantly decreased apoptosis induced by topoisomerase inhibitors doxorubicin (DOX) and camptothecin (Campt). It is known that DNA double-strand break inducing agents leads to activation (phosphorylation) of p53 that in turn regulates the expression of a variety of apoptosis-related genes including microRNA(miR)-34a and 34b/c. We found that DOX induced five phosphorylation sites of p53 (Ser15, 20, 37, 46 and 392); all of these sites were inhibited by si-AR. Subsequently we identified three kinases, SPAK, MDC1 and CaMKII that are under AR control and two of them, MDC1 and CaMKII, apparently participate in p53 upstream events that resulted in p53 inhibition. Using qPCR we showed that the level of miR-34a increased by 3-fold after DOX, but no increase was found with si-AR. MiR-34c expression increased 27 fold after DOX and only by 2.7 times with si-AR. It appears that AR-dependent inhibition of p53 resulted in suppression of miR-34a and -34c expression. Importantly, DOX did not induce miR-34 in LNCaP grown in an androgen free medium or in AR-negative prostate cancer cell lines, DU145 and PC3. To directly investigate the role of miR-34 in DOX-mediated apoptosis, we transfected cells with anti-miR-34 oligonucleotides or with miR-34. We found that inhibition of individual miR-34, either 34a or 34c, or forced overexpression of miR-34a or miR-34c did not modulate DOX-mediated apoptosis. Only simultaneous inhibition or forced overexpression of both miR-34 resulted in modulation of DOX-mediated apoptosis. Taken together, our data indicate that cooperation between miR-34a and 34c plays an important role in AR-dependent p53-mediated apoptosis in prostate cancer.
Mechanisms controlling the transition of a neural precursor cell from proliferation to differentiation during brain development determine the distinct anatomical features of the brain. Nitric oxide (NO) may mediate such a transition, because it can suppress DNA synthesis and cell proliferation. We cloned the gene encoding the neuronal isoform of Xenopus NO synthase (XNOS) and found that in the developing brain of Xenopus tadpoles, a zone of XNOS-expressing cells lies adjacent to the zone of dividing neuronal precursors. Exogenous NO, supplied to the tadpole brain in vivo, decreased the number of proliferating cells and the total number of cells in the optic tectum. Conversely, inhibition of NOS activity in vivo increased the number of proliferating cells and the total number of cells in the optic tectum. NOS inhibition yielded larger brains with grossly perturbed organization. Our results indicate that NO is an essential negative regulator of neuronal precursor proliferation during vertebrate brain development.
In spite of numerous publications on potential diagnostic application of circulating DNA and transrenal nucleic acid (Tr-NA) analysis, few, if any, tests based on this technology are available in clinical labs. This delay in test development and implementation is caused, at least in part, by the deficit in robust methods for isolation of short nucleic acid fragments from bodily fluids, as well as in techniques for analyzing these fragments. We have developed a new anion exchanger-based method for the isolation of cell-free nucleic acid fragments from large volumes of bodily fluids, and analyzed these fragments by PCR techniques specially designed to amplify "ultrashort" templates. The combination of these two techniques not only revealed the presence in urine of 10-150 bases or bp DNA and RNA fragments in addition to previously observed 150-200-bp DNA fragments and high molecular weight DNA, but also significantly increased the sensitivity of Tr-DNA detection. Additionally, we detected in urine a variety of miRNAs, including those excreted transrenally, thereby opening new diagnostic possibilities for Tr-NA analysis.
The establishment of a vertebrate body plan during embryogenesis is achieved through precise coordination of cell proliferation and morphogenetic cell movements. Here we show that nitric oxide (NO) suppresses cell division and facilitates cell movements during early development of Xenopus, such that inhibition of NO synthase (NOS) increases proliferation in the neuroectoderm and suppresses convergent extension in the axial mesoderm and neuroectoderm. NO controls cell division and cell movement through two separate signaling pathways. Both rely on RhoA-ROCK signaling but can be distinguished by the involvement of either guanylate cyclase or the planar cell polarity regulator Dishevelled. Through the cGMP-dependent pathway, NO suppresses cell division by negatively regulating RhoA and controlling the nuclear distribution of ROCK and p21WAF1. Through the cGMP-independent pathway, NO facilitates cell movement by regulating the intracellular distribution and level of Dishevelled and the activity of RhoA, thereby controlling the activity of ROCK and regulating actin cytoskeleton remodeling and cell polarization. Concurrent control by NO helps ensure that the crucial processes of cell proliferation and morphogenetic movements are coordinated during early development.
Animal organ development requires that tissue patterning and differentiation is tightly coordinated with cell multiplication and cell cycle progression. Several variations of the cell cycle program are used by Drosophila cells at different stages during development [1] [2]. In imaginal discs of developing larvae, cell cycle progression is controlled by a modified version of the well-characterized mammalian retinoblastoma (Rb) pathway [3] [4], which integrates signals from multiple effectors ranging from growth factors and receptors to small signaling molecules. Nitric oxide (NO), a multifunctional second messenger [5], can reversibly suppress DNA synthesis and cell division [6] [7]. In developing flies, the antiproliferative action of NO is essential for regulating the balance between cell proliferation and differentiation and, ultimately, the shape and size of adult structures in the fly [8] [9] [10]. The mechanisms of the antiproliferative activity of NO in developing organisms are not known, however. We used transgenic flies expressing the Drosophila nitric oxide synthase gene (dNOS1) and/or genes encoding components of the cell cycle regulatory pathways (the Rb-like protein RBF and the E2F transcription factor complex components dE2F and dDP) combined with NOS inhibitors to address this issue. We found that manipulations of endogenous or transgenic NOS activity during imaginal disc development can enhance or suppress the effects of RBF and E2F on development of the eye. Our data suggest a role for NO in the developing imaginal eye disc via interaction with the Rb pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.