Objectives To examine the relation between health and several dimensions of sexuality and to estimate years of sexually active life across sex and health groups in middle aged and older adults. Design Cross sectional study. Setting Two samples representative of the US population: MIDUS (the national survey of midlife development in the United States, 1995-6) and NSHAP (the national social life, health and ageing project, 2005-6). Participants 3032 adults aged 25 to 74 (1561 women, 1471 men) from the midlife cohort (MIDUS) and 3005 adults aged 57 to 85 (1550 women, 1455 men) from the later life cohort (NSHAP). Main outcome measures Sexual activity, quality of sexual life, interest in sex, and average remaining years of sexually active life, referred to as sexually active life expectancy. Results Overall, men were more likely than women to be sexually active, report a good quality sex life, and be interested in sex. These gender differences increased with age and were greatest among the 75 to 85 year old group: 38.9% of men compared with 16.8% of women were sexually active, 70.8% versus 50.9% of those who were sexually active had a good quality sex life, and 41.2% versus 11.4% were interested in sex. Men and women reporting very good or excellent health were more likely to be sexually active compared with their peers in poor or fair health: age adjusted odds ratio 2.2 (P<0.01) for men and 1.6 (P<0.05) for women in the midlife study and 4.6 (P<0.001) for men and 2.8 (P<0.001) for women in the later life study. Among sexually active people, good health was also significantly associated with frequent sex (once or more weekly) in men (adjusted odds ratio 1.6 to 2.1), with a good quality sex life among men and women in the midlife cohort (adjusted odds ratio 1.7), and with interest in sex. People in very good or excellent health were 1.5 to 1.8 times more likely to report an interest in sex than those in poorer health. At age 30, sexually active life expectancy was 34.7 years for men and 30.7 years for women compared with 14.9 to 15.3 years for men and 10. 6 years for women at age 55. This gender disparity attenuated for people with a spouse or other intimate partner. At age 55, men in very good or excellent health on average gained 5-7 years of sexually active life compared with their peers in poor or fair health. Women in very good or excellent health gained 3-6 years compared with women in poor or fair health. Conclusion Sexual activity, good quality sexual life, and interest in sex were higher for men than for women and this gender gap widened with age. Sexual activity, quality of sexual life, and interest in sex were positively associated with health in middle age and later life. Sexually active life expectancy was longer for men, but men lost more years of sexually active life as a result of poor health than women.
Reliability theory is a general theory about systems failure. It allows researchers to predict the age-related failure kinetics for a system of given architecture (reliability structure) and given reliability of its components. Reliability theory predicts that even those systems that are entirely composed of non-aging elements (with a constant failure rate) will nevertheless deteriorate (fail more often) with age, if these systems are redundant in irreplaceable elements. Aging, therefore, is a direct consequence of systems redundancy. Reliability theory also predicts the late-life mortality deceleration with subsequent leveling-o!, as well as the late-life mortality plateaus, as an inevitable consequence of redundancy exhaustion at extreme old ages. The theory explains why mortality rates increase exponentially with age (the Gompertz law) in many species, by taking into account the initial -aws (defects) in newly formed systems. It also explains why organisms &&prefer'' to die according to the Gompertz law, while technical devices usually fail according to the Weibull (power) law. Theoretical conditions are speci"ed when organisms die according to the Weibull law: organisms should be relatively free of initial #aws and defects. The theory makes it possible to "nd a general failure law applicable to all adult and extreme old ages, where the Gompertz and the Weibull laws are just special cases of this more general failure law. The theory explains why relative di!erences in mortality rates of compared populations (within a given species) vanish with age, and mortality convergence is observed due to the exhaustion of initial di!erences in redundancy levels. Overall, reliability theory has an amazing predictive and explanatory power with a few, very general and realistic assumptions. Therefore, reliability theory seems to be a promising approach for developing a comprehensive theory of aging and longevity integrating mathematical methods with speci"c biological knowledge. Academic Press
Reliability theory is a general theory about systems failure. It allows researchers to predict the age-related failure kinetics for a system of given architecture (reliability structure) and given reliability of its components. Reliability theory predicts that even those systems that are entirely composed of non-aging elements (with a constant failure rate) will nevertheless deteriorate (fail more often) with age, if these systems are redundant in irreplaceable elements. Aging, therefore, is a direct consequence of systems redundancy. Reliability theory also predicts the late-life mortality deceleration with subsequent leveling-o!, as well as the late-life mortality plateaus, as an inevitable consequence of redundancy exhaustion at extreme old ages. The theory explains why mortality rates increase exponentially with age (the Gompertz law) in many species, by taking into account the initial -aws (defects) in newly formed systems. It also explains why organisms &&prefer'' to die according to the Gompertz law, while technical devices usually fail according to the Weibull (power) law. Theoretical conditions are speci"ed when organisms die according to the Weibull law: organisms should be relatively free of initial #aws and defects. The theory makes it possible to "nd a general failure law applicable to all adult and extreme old ages, where the Gompertz and the Weibull laws are just special cases of this more general failure law. The theory explains why relative di!erences in mortality rates of compared populations (within a given species) vanish with age, and mortality convergence is observed due to the exhaustion of initial di!erences in redundancy levels. Overall, reliability theory has an amazing predictive and explanatory power with a few, very general and realistic assumptions. Therefore, reliability theory seems to be a promising approach for developing a comprehensive theory of aging and longevity integrating mathematical methods with speci"c biological knowledge. Academic Press
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.