A universal single indicator for the prediction of MSC eligibility for aGvHD prophylaxis was not identified. A multiparameter mathematical model for selecting MSC samples effective for the prevention of aGvHD was proposed.
We studied the capacity of multipotent mesenchymal stromal cells isolated from human bone marrow (BM) to long-term passaging, cloning, and re-cloning. Initial multipotent mesenchymal stromal cells and cells after gene labeling were studied. Multipotent mesenchymal stromal cells were obtained from donors (13-59 years) and cultured for 7 passages. Third generation lentivector was used for delivery of green fluorescent protein marker gene. The procedure of infection revealed reduced proliferative potential of multipotent mesenchymal stromal cells from elder donors. Hierarchy of precursor cells differing by their proliferative potential was demonstrated in the culture of multipotent mesenchymal stromal cells. Three categories of multipotent mesenchymal stromal cells were identified: mature cells incapable of proliferation (75.7±2.4% population) and cells with low and high proliferative potential (17.6±2.1 and 6.7±0.3%, respectively). The relative content of these cells insignificantly differed from passage to passage. The efficiency of cloning also remains stable, but re-cloning capacity sharply decreased after passage 3 and completely disappeared in multipotent mesenchymal stromal cells after cryopreservation. Thus, cultured multipotent mesenchymal stromal cells represent a heterogeneous and hierarchically organized population and the characteristics of this population depend of the duration of culturing and age of BM donor. This should be taken into account when using multipotent mesenchymal stromal cells in clinical practice.
Multipotent mesenchymal stromal cells (MSCs) participate in the formation of bone marrow niches for hematopoietic stem cells. Donor MSCs can serve as a source of recovery for niches in patients with graft failure (GF) after allogeneic bone marrow (BM) transplantation. Since only few MSCs reach the BM after intravenous injection, MSCs were implanted into the iliac spine. For 8 patients with GF after allo-BMT, another hematopoietic stem cell transplantation with simultaneous implantation of MSCs from their respective donors into cancellous bone was performed. BM was aspirated from the iliac crest of these patients at 1-2, 4-5, and 9 months after the intraosseous injection of donor MSCs. Patients' MSCs were cultivated, and chimerism was determined. In 6 out of 8 patients, donor hematopoiesis was restored. Donor cells (9.4 ± 3.3%) were detected among MSCs. Thus, implanted MSCs remain localized at the site of administration and do not lose the ability to proliferate. These results suggest that MSCs could participate in the restoration of niches for donor hematopoietic cells or have an immunomodulatory effect, preventing repeated rejection of the graft. Perhaps, intraosseous implantation of MSCs contributes to the success of the second transplantation of hematopoietic stem cells and patient survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.