The aim of the presented study was preparation, analysis of properties, and in vitro characterization of porous shape-memory scaffolds, designed for large bone defects treatment using minimally invasive surgery approach. Biodegradable terpolymers of l-lactide/glycolide/trimethylene carbonate (LA/GL/TMC) and l-lactide/glycolide/ε-caprolactone (LA/GL/Cap) were selected for formulation of these scaffolds. Basic parameters of shape memory behavior (i.e. recovery ratio, recovery time) and changes in morphology (SEM, average porosity) and properties (surface topography, water contact angle, compressive strength) during shape memory cycle were characterized. The scaffolds preserved good mechanical properties (compressive strength about 0.7 to 0.9 MPa) and high porosity (more than 80%) both in initial shape as well as after return from compressed shape. Then the scaffolds in temporary shape were inserted into the model defect of bone tissue at 37°C. After 12 min the defect was filled completely as a result of shape recovery process induced by body temperature. The scaffold obtained from LA/GL/TMC terpolymer was found the most prospective for the planned application thanks to its appropriate recovery time, high recovery ratio (more than 90%), and cytocompatibility in contact with human osteoblasts and chondrocytes.
The paper presents the course of synthesis and properties of a series of block copolymers intended for biomedical applications, mainly as a material for forming scaffolds for tissue engineering. These materials were obtained in the polymerization of l-lactide and copolymerization of l-lactide with glycolide carried out using a number of macroinitiators previously obtained in the reaction of polytransesterification of succinic diester, citric triester and 1,4-butanediol. NMR, FTIR and DSC were used to characterize the materials obtained; wettability and surface free energy were assessed too. Moreover, biological tests, i.e., viability and metabolic activity of MG-63 osteoblast-like cells in contact with synthesized polymers were performed. Properties of obtained block copolymers were controlled by the composition of the polymerization mixture and by the composition of the macroinitiator. The copolymers contained active side hydroxyl groups derived from citrate units present in the polymer chain. During the polymerization of l-lactide in the presence of polyesters with butylene citrate units in the chain, obtained products of the reaction held a fraction of highly branched copolymers with ultrahigh molecular weight. The reason for this observed phenomenon was strong intermolecular transesterification directed to lactidyl side chains, formed as a result of chain growth on hydroxyl groups related to the quaternary carbons of the citrate units. Based on the physicochemical properties and results of biological tests it was found that the most promising materials for scaffolds formation were poly(l-lactide–co–glycolide)–block–poly(butylene succinate–co–butylene citrate)s, especially those copolymers containing more than 60 mol % of lactidyl units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.