Due to the current trends aiming to reduce carbon dioxide emissions by increasing the use of renewable energy sources, changes are required in the operation of coal-fired steam units. The unstable nature of renewable energy sources, depending on weather conditions, means that the amount of energy produced varies and is not always in line with peak demand. To ensure the security and stability of energy supplies in the energy system, renewable sources should cooperate with units independent of environmental conditions. With conventional steam systems, the main issue of such energy storage applied to steam turbine units presented in the paper, which, in the event of a need for a sudden reduction of the system load, prevents overloading of the boiler and turbines, improving the safety of the system. This article presents a thermodynamic model of this energy storage. A zero-dimensional (0D) model was implemented, including the operating parameters of the unit. This model directly relates to the thermodynamic parameters defined at specific points of the thermodynamic cycle. Based on the 0D model, it was shown that the process of loading the energy storage with steam leads to a load reduction of up to 4%. On the other hand, when discharging the stored energy, the net power of the steam block may increase by 0.4%. For more detailed analysis, a three-dimensional (3D) non-equilibrium with including cross effects approach was applied. This approach is based on flow models, with phase transitions that determine temperature fields, densities, phase transition in relevant space, and is used for more accurate analysis. Here we investigate the relationship between the 0D and 3D approaches in the context of steam storage. The combination of these two approaches is the fundamental novelty of the article.
Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper presents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to similar monitoring applications of other industrial dynamic objects.
In comparison to the traditional solutions, active bearings offer great operating flexibility, ensure better operating conditions over a wider range of rotational speeds and are safe to use. In order to ensure optimum bearing performance a bearing control system is used that adapts different geometries during device operation. The selection of optimal controller parameters requires the use of modern optimization methods that make it possible to quickly achieve the assumed parameters. This article presents the method that has been employed to select the parameters of a proportional integral derivative (PID) controller, in which both stochastic algorithms and hybrid methods have been compared. The results show that all of the used algorithms were able to reach the global optimum but only the hybrid algorithm was repeatable in all runs within a low value of the standard
deviation. The best solution will be proposed in the future to control an active foil bearing.
Analysing of this paper would help to prevent failures of active foil bearing used in the
designed rotating machine.
This paper presents a comparative analysis of thermodynamic cycles of two ship power plant systems with a high-temperature helium-cooled nuclear reactor. The first of them is a gas system with recuperator, in which classical gas chamber is substituted for a HTGR reactor (High Temperature Gas-cooled Reactor). The second of the considered cycles is a combined gas-steam system where working medium flux from gas turbine outlet is directed into waste heat boiler and its heat is utilized for production of superheated steam to drive steam turbine. Preliminary calculations of the combine cycles showed that it is necessary to expand the system by adding to its steam part an inter-stage overheat for secondary steam, owing to that a required degree of steam dryness at outlet from the turbine can be reached, ensuring its correct operational conditions. The analyzed power systems were compared to each other with regard to efficiency of their thermodynamic cycles. Also, efficiency of particular cycles were subjected to optimization in respect to such parameters as : working gas temperature at outlet from reactor in gas system as well as steam pressure at outlet from waste heat boiler and partition pressure in steam part of combined system. Advantages of nuclear power plants compared with the classical power systems dominating currently in sea transport were also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.