This paper proposes a novel and secure blockchain hyperledger sawtooth-enabled consortium analytical model for smart educational accreditation credential evaluation. Indeed, candidate academic credentials are generated, verified, and validated by the universities and transmitted to the Higher Education Department (HED). The objective is to enable the procedure of credential verification and analyze tamper-proof forged records before validation. For this reason, we designed and created an accreditation analytical model to investigate individual collected credentials from universities and examine candidates’ records of credibility using machine learning techniques and maintain all these aspects of analysis and addresses in the distributed storage with a secure hash-encryption (SHA-256) blockchain consortium network, which runs on a peer-to-peer (P2P) structure. In this proposed analytical model, we deployed a blockchain distributed mechanism to investigate the examiner and analyst processes of accreditation credential protection and storage criteria, which are referred to as chaincodes or smart contracts. These chaincodes automate the distributed credential schedule, generation, verification, validation, and monitoring of the overall model nodes’ transactions. The chaincodes include candidate registration with the associated university (candidateReg()), certificate-related accreditation credentials update (CIssuanceTrans()), and every node’s transactions preservation in the immutable storage (ULedgerAV()) for further investigations. This model simulates the educational benchmark dataset. The result shows the merit of our model. Through extensive simulations, the blockchain-enabled analytical model provides robust performance in terms of credential management and accreditation credibility problems.
This article aims to highlight various methods and approaches to grouping countries, according to the behavior of their open innovation indicators. GDP, inflation and unemployment are the most important indicators of the economic and social policies of states, allowing them to be evaluated and models built. To find the relationships between open innovation indicators the paper uses marginal analysis and feature reduction, as well as machine learning methods (shift to the mean, agglomerative clustering and random forest methods). The results showed that, after isolating all groups, the importance of the signs was established and the patterns of behavior of indicators for each group were compared and open innovation dynamics was analyzed. The conclusions showed that it is obvious that increasing the number of variables in the model and using more extensive indicators can greatly increase the accuracy, in contrast to the generally accepted simple classifications. This approach makes it possible to more accurately find the connections between sectors of the economy or between state economies in general. An accompanying result of the study was the clarification of the equality of open innovation indicators for the analysis of their interrelationships between countries.
In the context of the global digital transformation, the most important factors determining socio-economic progress are the specific properties of human capital that are inherent only in the digital economy. In the new conditions, the role of integratively distributed network interaction of participants of global, national, corporate and social networks in the training of highly qualified specialists with new information and network skills and competencies is growing, a new form of human capital is emerging - network education capital (network education capital). On the basis of an interdisciplinary approach (economics, sociology, psychology, pedagogy, etc.), positive externalities are described that arise as a result of the inclusion of education in network communication processes. One of the main specific features of modern education is the departure from its linearity and verticality. It is shown that the network formation capital acquires the properties of a specific asset that brings a quasi-rent, and acts as a social elevator only if the involvement of more entities in the network increases
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.