The angiotensin-converting enzyme (ACE)-related carboxypeptidase, ACE2, is a type I integral membrane protein of 805 amino acids that contains one HEXXH ؉ E zincbinding consensus sequence. ACE2 has been implicated in the regulation of heart function and also as a functional receptor for the coronavirus that causes the severe acute respiratory syndrome (SARS). To gain further insights into this enzyme, the first crystal structures of the native and inhibitor-bound forms of the ACE2 extracellular domains were solved to 2.2-and 3.0-Å resolution, respectively. Comparison of these structures revealed a large inhibitor-dependent hinge-bending movement of one catalytic subdomain relative to the other (ϳ16°) that brings important residues into position for catalysis. The potent inhibitor MLN-4760 ((S,S)-2-{1-carboxy-2-[3-(3,5-dichlorobenzyl)-3H-imidazol4-yl]-ethylamino}-4-methylpentanoic acid) makes key binding interactions within the active site and offers insights regarding the action of residues involved in catalysis and substrate specificity. A few active site residue substitutions in ACE2 relative to ACE appear to eliminate the S 2 substrate-binding subsite and account for the observed reactivity change from the peptidyl dipeptidase activity of ACE to the carboxypeptidase activity of ACE2.The angiotensin-converting enzyme (ACE) 1 -related carboxypeptidase, ACE2, is a type I integral membrane protein of 805 amino acids that contains one HEXXH ϩ E zinc-binding consensus sequence (1, 2). The catalytic domain of ACE2 is 42% identical to that of its closest homolog, somatic angiotensinconverting enzyme (sACE; EC 3.4.15.1), a peptidyl dipeptidase that plays an important role in the renin angiotensin system for blood pressure homeostasis. The loss of ACE2 in knockout mice has no effect on blood pressure, but reveals ACE2 as an essential regulator of heart function (3). In a recent discovery, ACE2 was identified as a functional receptor for the coronavirus that is linked to the severe acute respiratory syndrome (SARS) (4, 5).The physiological differences observed in the phenotypes of ACE (6, 7) and/or ACE2 (3) knockout mice presumably reflect the significant differences in substrate specificity and reactivity between these enzymes. Many substrates for ACE2 were identified by screening biologically active peptides (8). In all cases, only carboxypeptidase activity was found. Of the seven best in vitro peptide substrates identified (k cat /K m Ͼ 10 5 M Ϫ1 s Ϫ1 ), proline and leucine are the preferred P 1 residues, with a partiality for hydrophobic residues in the P 1 Ј position, although basic residues at P 1 Ј are also cleaved (peptide-binding subsites in proteins are as previously defined (9)). Some of the best in vitro peptide substrates are apelin-13, des-Arg 9 -bradykinin, angiotensin II, and dynorphin A-(1-13). The longest peptide substrate identified is a 36-residue peptide, apelin-36 (8). An examination of the ACE2 and ACE literature may be found in recently published reviews (10 -12).We report here the first crystal ...
In the version of this caption initially published, the cover artwork was credited to Erin Dewalt, based on imagery from the author, rather than stating that it was created by Michael B. Battles and the design was by Erin Dewalt. The error has been corrected in the HTML and PDF versions of the caption. ERRATUM In the version of this article initially published, the genus name 'Mycoplasma' was incorrectly used in place of the correct 'Mycobacterium'. The error has been corrected in the HTML and PDF versions of the article. ERRATUM npg
Angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a recently identified zinc metalloprotease with carboxypeptidase activity that was identified using our genomics platform. We implemented a rational design approach to identify potent and selective ACE2 inhibitors. To this end, picomolar inhibitors of ACE2 were designed and synthesized.
Electrospray ionization mass spectrometry (ESI-MS) has proven to be a useful tool for examining noncovalent complexes between proteins and a variety of ligands. It has also been used to distinguish between denatured and refolded forms of proteins. Surfactants are frequently employed to enhance solubilization or to modify the tertiary or quaternary structure of proteins, but are usually considered incompatible with mass spectrometry. A broad range of ionic, nonionic, and zwitterionic surfactants was examined to characterize their effects on ESI-MS and on protein structure under ESI-MS conditions. Solution conditions studied include 4% acetic acid/50% acetonitrile/46% H 2 0 and 100% aqueous. Of the surfactants examined, the nonionic saccharides, such as n-dodecyl-P-D-glucopyranoside, at 0.1 Vo to 0.01% (w/v) concentrations, performed best, with limited interference from chemical background and adduct formation. Under the experimental conditions used, ESI-MS performance in the presence of surfactants was found to be unrelated to critical micelle concentration. It is demonstrated that surfactants can affect both the tertiary and quaternary structures of proteins under conditions used for ESI-MS. However, several of the surfactants caused significant shifts in the charge-state distributions, which appeared to be independent of conformational effects. These observations suggest that surfactants, used in conjunction with ESI-MS, can be useful for protein structure studies, if care is used in the interpretation of the results.Keywords: conformation; denaturation; detergent; electrospray; mass spectrometry; surfactant Surfactants play a significant role in protein chemistry with primary applications ranging from solubilization and stabilization of proteins to disaggregation of protein complexes and denaturation (Neugebauer, 1990(Neugebauer, , 1992Bollag & Edelstein, 1991). Some surfactants can disrupt protein higher order structure, whereas others are used as aids in protein refolding. They are employed in both gel and capillary electrophoresis and enhance protein and peptide recoveries from synthetic membranes employed in electroblotting and in electroelution of proteins from gels (Fernandez et al., 1994). Membrane-bound proteins, in particular, require surfactant treatment for solubilization. Abbreviotiom: CMC, critical micelle concentration; ESI, electrospray ionization; ESI-MS, electrospray ionization mass spectrometry; MALDI, matrix-assisted laser desorption/ionization; NP40, Nonidet P a , CHAPS, 3-(3-cholamidopropyl)dimethylammonio-I-propane sulfonate; CTAB, cetyl trimethylammonium bromide; LDAO, laurel dimethylamine oxide; n-dodecyl glucoside, n-dodecyl-0-D-glucopyranoside; n-hexylglucoside, n-hexyl-0-D-glucopyranoside; octyl glucoside, octyl-fl-D-glucopyranoside; octyl thioglucoside, I-S-octyl-fi-~-thioglucopyranoside.Matrix-assisted laser desorption/ionization or electrospray ionization have demonstrated molecular weight determinations for proteins greater than 100 kDa (Fenn et al., 1989;Smith et al., 19...
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.