Basic experimental stem cell research has opened up the possibility of many diverse clinical applications; however, translation to clinical trials has been restricted to only a few diseases. To broaden this clinical scope, pluripotent stem cell derivatives provide a uniquely scalable source of functional differentiated cells that can potentially repair damaged or diseased tissues to treat a wide spectrum of diseases and injuries. However, gathering sound data on their distribution, longevity, function and mechanisms of action in host tissues is imperative to realizing their clinical benefit. The large-scale availability of treatments involving pluripotent stem cells remains some years away, because of the long and demanding regulatory pathway that is needed to ensure their safety.
SUMMARY Cellular reprogramming technology has created new opportunities in understanding human disease, drug discovery, and regenerative medicine. While a combinatorial code was initially found to reprogram somatic cells to pluripotency, a “second generation” of cellular reprogramming involves lineage-restricted transcription factors and microRNAs that directly reprogram one somatic cell to another. This technology was enabled by gene networks active during development, which induce global shifts in the epigenetic landscape driving cell fate decisions. A major utility of direct reprogramming is the potential of harnessing resident support cells within damaged organs to regenerate lost tissue by converting them into the desired cell type in situ. Here, we review the progress in direct cellular reprogramming with a focus on the paradigm of in vivo reprogramming for regenerative medicine, while pointing to hurdles that must be overcome to translate this technology into future therapeutics.
A cDNA representing the plastid-encoded homolog of the prokaryotic ATP-dependent protease ClpP was amplified by reverse transcription-polymerase chain reaction, cloned, and sequenced. ClpP and a previously isolated cDNA designated ClpC, encoding an ATPase related t o proteins encoded by the ClpA/S gene family, were expressed in Eschefichia coli. Antibodies directed against these recombinant proteins recognized proteins in a wide variety of organisms. N-terminal analysis of the Clp protein isolated from crude leaf extracts showed that the N-terminal methionine is absent from ClpP and that the transit peptide is cleaved from ClpC. A combination of chloroplast subfractionation and immunolocaliration showed that in Arabidopsis, ClpP and ClpC localize t o the stroma of the plastid. lmmunoblot analyses indicated that ClpP and ClpC are constitutively expressed in all tissues of Arabidopsis at l e w l s equivalent to those of E. coli ClpP and ClpA. ClpP, immunopurified from tobacco extracts, hydrolyzed N-succinyl-Leu-Tyr-amidomethylcoumarin, a substrate of E. coli ClpP. Purified recombinant ClpC facilitated the degradation of 3H-methylcasein by E. coli ClpP in an ATP-dependent fashion. This demoristrates that ClpC is a functional homolog of E. coli ClpA and not of ClpB or ClpX. These data represent the only in vitro demonstration of the activity of a specific ATP-dependent chloroplast protease reported to date.
We have identified a novel protein, p22, required for "constitutive" exocytic membrane traffic. p22 belongs to the EF-hand superfamily of Ca2+-binding proteins and shows extensive similarity to the regulatory subunit of protein phosphatase 2B, calcineurin B. p22 is a cytosolic N-myristoylated protein that undergoes conformational changes upon binding of Ca2+. Antibodies against a p22 peptide block the targeting/fusion of transcytotic vesicles with the apical plasma membrane, but recombinant wild-type p22 overcomes that inhibition. Nonmyristoylated p22, or p22 incapable of undergoing Ca2+-induced conformational changes, cannot reverse the antibody-mediated inhibition. The data suggest that p22 may act by transducing cellular Ca2+ signals to downstream effectors. p22 is ubiquitously expressed, and we propose that its function is required for membrane trafficking events common to many cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.