We developed nanoscale ex situ thermal impulse (i.e., the temperature and duration of a heating event) sensors for structural fire forensics using a mixture of two lanthanide-doped oxide precursors (precursor Eu:ZrO and precursor Dy:YO) that undergo irreversible phase changes when heated. These changes are probed using photoluminescence (PL) spectroscopy with the PL spectra being dependent on the thermal impulse (TI) experienced by the sensors. By correlating the PL spectra to different in-lab TIs, we are able to produce a spectroscopic calibration for our sensors. This calibration allows us to determine an unknown TI of a heating event using only the PL spectrum of the heated TI sensors. In this study, we report on the calibration of these sensors for isothermal heating durations up to 600 s and isothermal temperatures up to 1273 K. Using this calibration, we also demonstrate their ability to determine an unknown TI and demonstrate their functionality when dispersed into paint, which is heated in the presence of drywall.
We have developed a bidirectional focusing microscope that utilizes feedback-assisted wavefront shaping to focus light inside a heterogenous material in order to monitor sub-surface chemical reactions. The bidirectional geometry is found to provide superior intensity enhancement relative to single-sided focusing, owing to increased mode control and long-range mesoscopic correlations. Also, we demonstrate the microscope’s capability to measure sub-surface chemical reactions by optically monitoring the photodegradation of a Eu-doped organic molecular crystal embedded in a heterogeneous material using both fluorescence and Raman spectroscopy as probe techniques.
A quaternary bromide bath (LiBr-KBr-CsBr-AlBr 3 ) was used to electro-coat aluminum on steel substrates. The electrolyte was prepared by the addition of AlBr 3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr 3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminum coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.Published by Elsevier B.V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.