During food processing or storage, milk proteins can react with reducing sugars via the Maillard reaction (glycation), which may alter their techno-functional properties. The aim of this study was to investigate the relationship between molecular changes of casein occurring during different stages of the Maillard reaction and its acid-induced gelling properties. Therefore, sodium caseinate was heated in a dry state at 60 °C in the presence of lactose and analyzed for structural modifications by determining Amadori compounds (glycoconjugation) indirectly as furosine, the total lysine modification, and the extent of protein cross-linking. For techno-functional characterization, acid-induced gels were prepared by the addition of glucono-δ-lactone and evaluated by measuring pH kinetics during gel formation, gel strength, and water holding capacity. The time to reach pH 4.6 during the gelation process was significantly delayed with increasing extent of the Maillard reaction. Glycation with lactose also led to a significant increase in gel strength and water holding capacity. The increase in gel stability was rather independent from the amount of sugars covalently bound to the proteins during the early phase of the Maillard reaction but strongly correlated to the degree of protein polymerization. Small-and medium-sized casein oligomers, formed during advanced stages of the Maillard reaction, contributed considerably to the formation of stronger gels with higher water holding capacity, whereas a sharp increase in the relative amount of the polymer fraction observed during prolonged crosslinking processes caused a spontaneous destabilization of the gel network. Knowledge about structure−function relationships on a molecular level can provide useful information to control food texture by raw material quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.