Highlights d Turing pattern mechanisms are highly sensitive to perturbations d Regulatory mechanisms profoundly influence pattern generation capability d Many more molecular mechanisms can generate Turing patterns than previously thought d We derive simple but surprisingly powerful heuristics for designing Turing patterns
The spatial organisation of gene expression is essential to create structure and function in multicellular organisms during developmental processes. Such organisation occurs by the execution of algorithmic functions, leading to patterns within a given domain, such as a tissue. Engineering these processes has become increasingly important because bioengineers are seeking to develop tissues ex vivo. Moreover, although there are several theories on how pattern formation can occur in vivo, the biological relevance and biotechnological potential each of these remains unclear. In this review, we will briefly explain four of the major theories of pattern formation in the light of recent work. We will explore why programming of such patterns is necessary, while discussing a three-step framework for artificial engineering approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.