High-volume hydraulic fracturing (HVHF) gas-drilling operations in the Marcellus Play have raised environmental concerns, including the risk of groundwater contamination. Fingerprinting water impacted by gas-drilling operations is not trivial given other potential sources of contamination. We present a multivariate statistical modeling framework for developing a quantitative, geochemical fingerprinting tool to distinguish sources of high salinity in shallow groundwater. The model was developed using new geochemical data for 204 wells in New York State (NYS), which has a HVHF moratorium and published data for additional wells in NYS and several salinity sources (Appalachian Basin brines, road salt, septic effluent, and animal waste). The model incorporates a stochastic simulation to predict the geochemistry of high salinity (>20 mg/L Cl) groundwater impacted by different salinity sources and then employs linear discriminant analysis to classify samples from different populations. Model results indicate Appalachian Basin brines are the primary source of salinity in 35% of sampled NYS groundwater wells with >20 mg/L Cl. The model provides an effective means for differentiating groundwater impacted by basin brines versus other contaminants. Using this framework, similar discriminatory tools can be derived for other regions from background water quality data.
Precipitation throughfall (TF) plays an important role in the water balance of tropical forests. This study used 164 gauges to quantify precipitation and TF variability in a tropical pre‐montane transitional cloud forest on the Caribbean slope of the Cordillera Tilarán, Costa Rica, to identify the ecological and meteorological drivers of this variability. Daily TF measurements were taken from 28 June to 17 July 2012 and 12 June to 16 July 2013, for a total of 39 precipitation events. The total mean TF was 87.9 percent and TF at individual gauges ranged from 22.7 percent to 245.7 percent. Leaf area index (LAI) was calculated above each gauge using hemispheric photography for a mean study‐site LAI of 7.7. There was no statistically significant relationship between LAI and TF. However, the amount of TF was positively correlated with precipitation intensity, while the variability of TF was negatively correlated with precipitation intensity. Our calculations indicate that at least 61 gauges are required to obtain mean TF estimates with less than 5 percent error. This study demonstrates that TF is highly spatially heterogeneous due to multiple compounding effects.
Understanding flash floods in watersheds of the New York City water supply system (NYCWSS) is important, as turbidity associated with flooding degrades water quality in the unfiltered portions of this water supply system. We examined synoptic‐scale atmospheric conditions most frequently associated with flash flooding in this region. Flash floods between 1987 and 2013 were identified in two small watersheds of the NYCWSS using USGS 15‐min discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges, both located in the Catskill Mountains. A total of 25 flash floods were detected in these watersheds and there were 17 separate flash flood days. The Spatial Synoptic Typer Tools 4.0 were used to characterize the synoptic‐scale atmospheric patterns influencing the study area based on NCEP/NCAR 500‐mb geopotential height reanalysis data. Through this procedure, 17 unique synoptic patterns were identified. Three of these types were found to be strongly associated with flash flooding events. Composites of these types show southwesterly flow which suggests advection of moisture from the Gulf of Mexico and Atlantic Ocean. The flash flood days were compared to the National Weather Service flash flood warnings. The flash flood warnings issued for Ulster County compared to the flash floods in the study watersheds highlight the highly localized nature of flash flooding in this region.
This study presents a climatology of water vapor fluxes for the eastern U.S. and adjacent Atlantic with particular focus on the Northeast. Pathways of moisture transport comprising this climatology were discerned using a self-organizing map methodology ingesting daily integrated vapor transport data from ECMWF ERA-Interim Reanalysis from 1979-2017 at a 2.5°× 2.5° spatial resolution. Sixteen spatially distinct moisture transport patterns capture the variety of water vapor transport in the region. The climatology of water vapor transport is precisely and comprehensively defined via synthesis of spatial and temporal characteristics of the fluxes. Each flux has a distinct seasonality and frequency. The fluxes containing the highest amounts of moisture transport occur less frequently than those with less moisture transport. Because the patterns showing less moisture transport are prevalent, they are major contributors to the manner in which water vapor is moved through the eastern US. The spatial confinement of fluxes is inversely related to persistence, with strong, narrow bands of enhanced moisture transport most often moving through the region on daily timescales. Many moisture fluxes meet a threshold-based definition of atmospheric rivers, with the diversity in trajectories and moisture sources indicating that a variety of mechanisms develop these enhanced moisture transport conditions. Temporal variability in the monthly frequencies of several of the fluxes in this study aligns with changes in the regional precipitation regime, demonstrating that this water vapor flux climatology provides a precise moisture-delivery framework from which changes in precipitation can be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.