The recent development of phase transfer ligand exchange methods for PbS quantum dots (QD) has enhanced the performance of quantum dots solar cells and greatly simplified the complexity of film deposition. However, the dispersions of PbS QDs (inks) used for film fabrication often suffer from colloidal instability, which hinders large-scale solar cell production. In addition, the wasteful spin-coating method is still the main technique for the deposition of QD layer in solar cells. Here, we report a strategy for scalable solar cell fabrication from highly stable PbS QD inks. By dispersing PbS QDs capped with CH3NH3PbI3 in 2,6-difluoropyridine (DFP), we obtained inks that are colloidally stable for more than 3 months. Furthermore, we demonstrated that DFP yields stable dispersions even of large diameter PbS QDs, which are of great practical relevance owing to the extended coverage of the near-infrared region. The optimization of blade-coating deposition of DFP-based inks enabled the fabrication of PbS QD solar cells with power conversion efficiencies of up to 8.7%. It is important to underline that this performance is commensurate with the devices made by spin coating of inks with the same ligands. A good shelf life-time of these inks manifests itself in the comparatively high photovoltaic efficiency of 5.8% obtained with inks stored for more than 120 days.
Capping colloidal quantum dots (CQDs) with atomic ligands is a powerful approach to tune their properties and improve the charge carrier transport in CQD solids. Efficient passivation of the CQD surface, which can be achieved with halide ligands, is crucial for application in optoelectronic devices. Heavier halides, i.e., I– and Br–, have been thoroughly studied as capping ligands in the last years, but passivation with fluoride ions has not received sufficient consideration. In this work, effective coating of PbS CQDs with fluoride ligands is demonstrated and compared to the results obtained with other halides. The electron mobility in field-effect transistors of PbS CQDs treated with different halides shows an increase with the size of the atomic ligand (from 3.9 × 10–4 cm2/(V s) for fluoride-treated to 2.1 × 10–2 cm2/(V s) for iodide-treated), whereas the hole mobility remains unchanged in the range between 1 × 10–5 cm2/(V s) and 10–4cm2/(V s). This leads to a relatively more pronounced p-type behavior of the fluoride- and chloride-treated films compared to the iodide-treated ones. Cl–- and F–-capped PbS CQDs solids were then implemented as p-type layer in solar cells; these devices showed similar performance to those prepared with 1,2-ethanedithiol in the same function. The relatively stronger p-type character of the fluoride- and chloride-treated PbS CQD films broadens the utility of such materials in optoelectronic devices.
Phase-transfer exchange of pristine organic ligands for inorganic ones is essential for the integration of colloidal quantum dots (CQDs) in optoelectronic devices. This method results in a colloidal dispersion (ink) which can be directly deposited by various solution-processable techniques to fabricate conductive films. For PbS CQDs capped with methylammonium lead iodide ligands (MAPbI 3 ), the most commonly employed solvent is butylamine, which enables only a short-term (hours) colloidal stability and thus brings concerns on the possibility of manufacturing CQD devices on a large scale in a reproducible manner. In this work, we studied the stability of alternative inks in two highly polar solvents which impart long-term colloidal stability of CQDs: propylene carbonate (PC) and 2,6-difluoropyridine (DFP). The aging and the loss of the ink’s stability were monitored with optical, structural, and transport measurements. With these solvents, PbS CQDs capped with MAPbI 3 ligands retain colloidal stability for more than 20 months, both in dilute and concentrated dispersions. After 17 months of ink storage, transistors with a maximum linear mobility for electrons of 8.5 × 10 –3 cm 2 /V s are fabricated; this value is 17% of the one obtained with fresh solutions. Our results show that both PC- and DFP-based PbS CQD inks offer the needed shelf life to allow for the development of a CQD device technology.
Semiconducting single‐walled carbon nanotubes (s‐SWNTs) are used as a protective interlayer between the lead sulfide colloidal quantum dot (PbS CQD) active layer and the anode of the solar cells (SCs). The introduction of the carbon nanotubes leads to increased device stability, with 85% of the initial performance retained after 100 h exposure to simulated solar light in ambient condition. This is in sharp contrast with the behavior of the device without s‐SWNTs, for which the photoconversion efficiency, the open circuit voltage, the short‐circuit current, and the fill factor all experiencing a sharp decrease. Therefore, the inclusion of s‐SWNT as interlayer in CQD SCs, give rise to SCs of identical efficiency (above 8.5%) and prevents their performance degradation.
PbS colloidal quantum dots (CQDs) are versatile building blocks for bottom-up fabrication of various optoelectronic devices. The transport properties of thin films of this class of materials depend on the size of the CQDs, their surface ligands, and stoichiometry. The most common synthetic methods yield PbS CQDs with an excess of Pb atoms, which induces n-type transport properties in CQD films. In this work, we developed a new synthesis, which offers S-rich PbS CQDs. Thanks to their sufficient colloidal stability in nonpolar solvents, we established a protocol for the integration of these CQDs into thin field-effect transistors and found strong hole-dominated transport with a hole mobility of about 1 × 10–2 cm2/Vs. Moreover, we were able to enhance the electron mobility for almost two orders of magnitude while keeping the hole mobility nearly the same. This approach allows us to obtain reliably p-doped PbS CQDs, which can be used for the fabrication of various electronic and optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.