Background and Purpose-Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors. Methods-Four differentiation stages were identified on the basis of quantitative polymerase chain reaction expression of pluripotency, proliferation, and differentiation markers. Neural progenitors were transplanted at these 4 stages into rats with no, small, or large middle cerebral artery occlusion lesions. The fate of each transplant was compared with their pretransplantation status 1 to 4 months posttransplantation. Results-The influence of the postischemic environment was limited to graft survival and occurrence of nonneuroectodermal structures after transplantation of very immature neural progenitors. Both effects were lost with differentiation. We identified a particular stage of differentiation characterized in vitro by a rebound of proliferative activity that produced highly proliferative grafts susceptible to threaten surrounding host tissues. Conclusion-The effects of the ischemic environment on the formation of teratoma by transplanted human embryonic stem cell-derived neural progenitors are limited to early differentiation stages that will likely not be used for stem cell therapy. In contrast, hyperproliferation observed at later stages of differentiation corresponds to an intrinsic activity that should be monitored to avoid tumorigenesis. (Stroke. 2010;41:153-159.)
During the last decade, much progress has been made in developing protocols for the differentiation of human embryonic stem cells (hESCs) into a neural phenotype. The appropriate agent for cell therapy is neural precursors (NPs). Here, we demonstrate the derivation of highly enriched and expandable populations of proliferating NPs from the CCTL14 line of hESCs. These NPs could differentiate in vitro into functionally active neurons, as confirmed by immunohistochemical staining and electrophysiological analysis. Neural cells differentiated in vitro from hESCs exhibit broad cellular heterogeneity with respect to developmental stage and lineage specification. To analyze the population of the derived NPs, we used fluorescence-activated cell sorting (FACS) and characterized the expression of several pluripotent and neural markers, such as Nanog, SSEA-4, SSEA-1, TRA-1-60, CD24, CD133, CD56 (NCAM), beta-III-tubulin, NF70, nestin, CD271 (NGFR), CD29, CD73, and CD105 during long-term propagation. The analyzed cells were used for transplantation into the injured rodent brain; the tumorigenicity of the transplanted cells was apparently eliminated following long-term culture. These results complete the characterization of the CCTL14 line of hESCs and provide a framework for developing cell selection strategies for neural cell-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.