Abstract. Rainfall-Induced Landslide Early Warning Systems (RILEWS) are critical tools for reducing and mitigating economic and social damages related to landslides. Despite this critical need, the Southern Andes does not yet possess an operational-scale system to support decision-makers. We propose RILEWS using a logistic regression system in the Southern Andes. The models were forced by corrected simulations of precipitation and geomorphological features. We evaluated the precipitation using the Weather and Research Forecast (WRF) model on an hourly scale. The precipitation was corrected using bias correction approaches with daily data from 12 meteorological stations. Four logistic and probabilistic models were then calibrated using Logit and Probit distributions. The predictor variables used were combinations of the slope, corrected daily precipitation and data preceding the events (7 and 30 days previous) for 57 Rainfall-Induced Landslides (RIL); validation was by ROC analysis. Our results showed that WRF does not represent the spatial variability of the precipitation. This situation was resolved by bias correcting. Specifically, the PP_M4a method with Bernoulli distribution for the occurrence and Gamma for the intensity produced lower MAE and RMSE values and higher correlation values. Finally, our RILEWS had a high predicting capacity with an AUC of 0.80 using daily precipitation data and slope. We conclude that our methodology is suitable at an operational level in the Southern Andes. Our contribution could become a useful tool in the mitigation of impacts related to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.