Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models 1 .
github.com/ejcgt/attention-target-detection Figure 1: Visual attention target detection over time. We propose to solve the problem of identifying gaze targets in video. The goal of this problem is to predict the location of visually attended region (circle) in every frame, given a track of an individual's head (bounding box). It includes the cases where such target is out of frame (row-col: 1-2, 1-3, 2-1), in which case the model should correctly infer its absence.
This paper addresses the challenging problem of estimating the general visual attention of people in images. Our proposed method is designed to work across multiple naturalistic social scenarios and provides a full picture of the subject's attention and gaze. In contrast, earlier works on gaze and attention estimation have focused on constrained problems in more specific contexts. In particular, our model explicitly represents the gaze direction and handles out-of-frame gaze targets. We leverage three different datasets using a multi-task learning approach. We evaluate our method on widely used benchmarks for single-tasks such as gaze angle estimation and attention-within-an-image, as well as on the new challenging task of generalized visual attention prediction. In addition, we have created extended annotations for the MMDB and GazeFollow datasets which are used in our experiments, which we will publicly release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.