Cisplatin (Cis-diamminedichloroplatinum II, CP) is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se) against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p.), alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO) and decreased reduced glutathione (GSH) concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST). Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage.
A new design of a two-stage cycloidal speed reducer is presented in this paper. A traditional two-stage cycloidal speed reducer is obtained by the simple combination of single-stage cycloidal speed reducers. A single-stage reducer engages two identical cycloid discs in order to balance dynamical loads and to obtain uniform load distribution. Consequently, the traditional two-stage reducer has four cycloid discs, in total. The newly designed two-stage cycloidal speed reducer, presented in this paper, has one cycloid disc for each stage, that is, two cycloid discs in total, which means that it is rather compact. Due to its specific concept, this reducer is characterized by good load distribution and dynamic balance, and this is described in the paper. Stress state analysis of cycloidal speed reducer elements was also realized, using the finite elements method (FEM), for the most critical cases of conjugate gear action (one, two, or three pairs of teeth in contact). The results showed that cycloid discs are rather uniformly loaded, justifying the design solution presented here. Experimental analysis of the stress state for cycloid discs was realized, using the strain gauges method. It is easy to conclude, based on the obtained results, that even for the most critical case (one pair of teeth in contact) stresses on cycloid discs are in the allowed limits, thus providing normal functioning of the reducer for its anticipated lifetime.
In this study the leaves and fruits of wild raspberry (Rubus idaeus L.) populations from the central Balkan region were examined to determine the level of secondary metabolites and related antioxidant activity, as well as biological activity, upon existing ethnobotanical evidence, primarily linked to gastrointestinal disorders. The values obtained for total phenols ranged from 59.68 to 96.83 mg GA g-1 and 24.29 to 38.71 mg GA g-1 in leaf and fruit extracts, respectively. The highest values of tannins and anthocyanins were determined for leaf extracts from a population of east Serbia at a level of 1.27 mg mL-1 and 9.00 mg mL-1. Antioxidant activity was evaluated by measuring the scavenging capacity of the extracts on DPPH. Higher antioxidant activity was detected in the leaf extracts than in the fruit extracts. Leaf and fruit extract were the most effective against Escherichia coli (ATCC 8739). Anticancer activity was studied on a human colorectal cancer cell line HCT-116. Leaf extracts exhibited anticancer activity with IC50/24 h 162.38 μg mL-1 and IC50/48 h 95.69 μg mL-1. Wild raspberry leaf and fruit extracts contain numerous secondary metabolites providing marked antioxidant, antimicrobial and anticancer activity.
Low temperature heating panel systems offer distinctive advantages in terms of thermal comfort and energy consumption, allowing work with low exergy sources. The purpose of this paper is to compare floor, wall, ceiling, and floor-ceiling panel heating systems in terms of energy, exergy and CO2 emissions. Simulation results for each of the analyzed panel system are given by its energy (the consumption of gas for heating, electricity for pumps and primary energy) and exergy consumption, the price of heating, and its carbon dioxide emission. Then, the values of the air temperatures of rooms are investigated and that of the surrounding walls and floors. It is found that the floor-ceiling heating system has the lowest energy, exergy, CO2 emissions, operating costs, and uses boiler of the lowest power. The worst system by all these parameters is the classical ceiling heating.
A direct connection is proposed between the "dynamic" transport properties and the "static" topological structure for branched polymers in any number d of spatial dimensions. Specifically, the resistivity exponent I is given by % = d f /d h where d f and di are the fractal and topological dimensions (the number of sites within path length / of a given site scales as M ~ / 0. To confirm this new result, we carry out extensive exact and Monte Carlo calculations for d = 2, 3, 4, and 8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.