Additional information is available at the end of the chapter http://dx.doi.org/10.5772/50738
IntroductionNatural zeolites are environmentally and economically acceptable hydrated aluminosilicate materials with exceptional ion-exchange and sorption properties. Their effectiveness in different technological processes depends on their physical-chemical properties that are tightly connected to their geological deposits. The unique treedimensional porous structure gives natural zeolites various application possibilities. Because of the excess of the negative charge on the surface of zeolite, which results from isomorphic replacement of silicon by aluminum in the primary structural units, natural zeolites belong to the group of cationic exchangers. Numerous studies so far have confirmed their excellent performance on the removal of metal cations from wastewaters. However, zeolites can be chemically modified by inorganic salts or organic surfactants, which are adsorbed on the surface and lead to the generation of positively charged oxihydroxides or surfactant micelles, and which enables the zeolite to bind also anions, like arsenates or chromates, in stable or less stable complexes. Natural zeolites have advantages over other cation exchange materials such as commonly used organic resins, because they are cheap, they exhibit excellent selectivity for different cations at low temperatures, which is accompanied with a release of non-toxic exchangeable cations (K + , Na + , Ca 2+ and Mg 2+ ) to the environment, they are compact in size and they allow simple and cheap maintenance in the full-scale applications. The efficiency of water treatment by using natural and modified zeolites depends on the type and quantity of the used zeolite, the size distribution of zeolite particles, the initial concentration of contaminants (cation/anion), pH value of solution, ionic strength of solution, temperature, pressure, contact time of system zeolite/solution and the presence of other organic compounds and anions. For water treatment with natural zeolites, standard procedures are used, usually a procedure in column or batch process. Ion exchange and adsorption properties of natural zeolites in comparison with other chemical and biological processes have the advantage of
Water Treatment 82removing impurities also at relatively low concentrations and allows conservation of water chemistry, if the treatment is carried out in the column process [1]. Subject of further academic and industrial research should be to improve the chemical and physical stability of modified zeolites and to explore their catalytic properties, which would allow their use in catalytic degradation of organic pollutants. More careful consideration of their superb metal removal properties and awareness of possible regeneration or further use of contaminant/metal-loaded forms can considerably increase their environmental application possibilities, with a focus the reduction of high concentrations of cations and anions in drinking water and wastewater, for surface, und...