Background and AimFree radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa.Methods/Principal FindingsStrawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found.ConclusionsStrawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species.
Early separation of rat pups from their mothers (separatio a matrem) is considered and accepted as an animal model of perinatal stress. Adult rats, separated early postnatally from their mothers, are developing long-lasting changes in the brain and neuroendocrine system, corresponding to the findings observed in schizophrenia and affective disorders. With the aim to investigate the morphological changes in this animal model we exposed 9-day-old (P9) Wistar rats to a 24 h maternal deprivation (MD). At young adult age rats were sacrificed for morphometric analysis and their brains were compared with the control group bred under the same conditions, but without MD. Rats exposed to MD had a 28% smaller cell soma area in the prefrontal cortex (PFCX), 30% in retrosplenial cortex (RSCX), and 15% in motor cortex (MCX) compared to the controls. No difference was observed in the expression of glial fibrillary acidic protein in the neocortex of MD rats compared to the control group. The results of this study demonstrate that stress in early life has a long-term effect on neuronal soma size in cingulate and retrosplenial cortex and is potentially interesting as these structures play an important role in cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.