Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.
We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.
Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately 40% of children with ESRD in the United States. Hitherto, mutations in 23 genes have been described as causing autosomal dominant isolated CAKUT in humans. However, .90% of cases of isolated CAKUT still remain without a molecular diagnosis. Here, we hypothesized that genes mutated in recessive mouse models with the specific CAKUT phenotype of unilateral renal agenesis may also be mutated in humans with isolated CAKUT. We applied next-generation sequencing technology for targeted exon sequencing of 12 recessive murine candidate genes in 574 individuals with isolated CAKUT from 590 families. In 15 of 590 families, we identified recessive mutations in the genes FRAS1, FREM2, GRIP1, FREM1, ITGA8, and GREM1, all of which function in the interaction of the ureteric bud and the metanephric mesenchyme. We show that isolated CAKUT may be caused partially by mutations in recessive genes. Our results also indicate that biallelic missense mutations in the Fraser/MOTA/BNAR spectrum genes cause isolated CAKUT, whereas truncating mutations are found in the multiorgan form of Fraser syndrome. The newly identified recessive biallelic mutations in these six genes represent the molecular cause of isolated CAKUT in 2.5% of the 590 affected families in this study.
No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.