Three-dimensional modelling software tools enable the creation of a digital replica of the product—“Digital Twin”—a representative of “Virtual Reality” as one of the prominent trends of Industry 4.0. The development of the Digital Twin can start simultaneously with the development of the product, primarily for the purpose of selecting optimal technical and technological solutions prior to and during physical construction, and, ultimately, with the intention of managing the entire product life cycle. The Digital Twin, as one of the key technological achievements in the implementation of the business system transformation from traditional to smart, should also be recognized as the cornerstone of the “Shipyard 4.0” model, i.e., its “Cyber-Physical Space.” This paper is based on statistical and empirical data of the observed shipyard with the aim to represent the significance of the Digital Twin ship in preserving and improving the competitiveness of the shipbuilding industry. Namely, with the emphasis this article places on the contribution of “advanced outfitting” in achieving savings in the shipbuilding process as well as its role in attaining high standards of environmental protection and workplace safety, the importance of its further improvement is an obvious conclusion—with Digital Twin being one of the recognized tools for this purpose.
The implementation of the Industry 4.0 concept enables the flexibility, modularity and self-optimization of the manufacturing process. Process planning, placed in the value chain between construction and physical manufacturing, therefore, also demands digital transformation, while management of the transformation towards the new digital framework represents one of the most demanding challenges. Continuing the research on its structure and role within the smart factory, the main motivation for this work was to recognize the potential of the digital transformation of process planning elements, and to define the key dimensions that are essential for the readiness factor calculation and later transformational strategy formation, but also to recognize the current level of awareness of the Industry 4.0 concept among the process planners, along with the current use of its elements and key priorities for the transformation. The research has therefore been conducted in 34 Croatian metal machining companies, within which the influence of company size, level of education and familiarity with Industry 4.0 on final results and the stage of development have been investigated. The results have shown that the company size has a significant influence on the development stage and the use of certain elements wherein small and medium enterprises (SMEs) have already implemented certain digital elements, while they also tend to have a better fundamental infrastructure when using complex process planning methods, unlike others, which are still highly traditional. Organization and human resources have been ranked with the highest priority for change, while target goals for hardware and software have been set, with the managerial challenges of transformation defined and discussed.
Accelerated technology developments caused by Industry 4.0 create problems in its implementation. One of the most important factors that hinder the transition of companies is ignorance and, therefore, the fear of new technologies present among employees. Learning factories have proven to be one of the best solutions for introducing employees to the technologies of Industry 4.0. Croatia is significantly behind in implementing the features of Industry 4.0, especially compared to more developed countries. To facilitate the transition of the Croatian industry to Industry 4.0, it is necessary to acquaint existing and future employees with its technologies through learning factories. There is currently only one learning factory in Croatia, which is too few. This paper presents the process of design and establishment of a learning factory at the Faculty of Mechanical Engineering and Naval Architecture in Zagreb, which facilitates research work and education of students and employees with Industry 4.0.
Market positioning, i.e., the competitiveness of European shipyards, depends a lot on the measures of continuously improving the business processes, therefore meeting the criteria of environmental protection and sustainable energy. Lean management enables ongoing improvements of all system processes by recognizing and removing the unnecessary costs of the same, i.e., those activities which do not contribute to the added value for the customer. In this paper, the authors research the magnitude of improvements in the shipbuilding sales process achieved by applying the Lean tool “Value Stream Mapping” (VSM). The example of analysing the informational stream of the studied European shipyard’s existing sales process, performed by implementing the VSM, has defined the measures to decrease the losses in the process, with an emphasis on waiting time in internal and external communication. Upon VSM of the future state, measuring improvements realised by applying key performance indicators began. Significant cost savings in the sales process and the simultaneous increase of productivity of the employees participating in those process activities have been noted, as well as the substantial growth in sales and the shipyard’s income.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.