Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context. Methods: A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections. Results: We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way. Conclusions: Biomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
Lung cancer accounts for the largest amount of deaths worldwide with respect to the other oncological pathologies. To guarantee the most effective cure to patients for such aggressive tumours, radiomics is increasing as a novel and promising research field that aims at extracting knowledge from data in terms of quantitative measures that are computed from diagnostic images, with prognostic and predictive ends. This knowledge could be used to optimize current treatments and to maximize their efficacy. To this end, we hereby study the use of such quantitative biomarkers computed from CT images of patients affected by Non-Small Cell Lung Cancer to predict Overall Survival. The main contributions of this work are two: first, we consider different volumes of interest for the same patient to find out whether the volume surrounding the visible lesions can provide useful information; second, we introduce 3D Local Binary Patterns, which are texture measures scarcely explored in radiomics. As further validation, we show that the proposed signature outperforms not only the features automatically computed by a deep learning-based approach, but also another signature at the state-of-the-art using other handcrafted features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.