DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer.
Lung cancer accounts for the largest amount of deaths worldwide with respect to the other oncological pathologies. To guarantee the most effective cure to patients for such aggressive tumours, radiomics is increasing as a novel and promising research field that aims at extracting knowledge from data in terms of quantitative measures that are computed from diagnostic images, with prognostic and predictive ends. This knowledge could be used to optimize current treatments and to maximize their efficacy. To this end, we hereby study the use of such quantitative biomarkers computed from CT images of patients affected by Non-Small Cell Lung Cancer to predict Overall Survival. The main contributions of this work are two: first, we consider different volumes of interest for the same patient to find out whether the volume surrounding the visible lesions can provide useful information; second, we introduce 3D Local Binary Patterns, which are texture measures scarcely explored in radiomics. As further validation, we show that the proposed signature outperforms not only the features automatically computed by a deep learning-based approach, but also another signature at the state-of-the-art using other handcrafted features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.