The Prechtl General Movement Assessment (GMA) has become a cornerstone assessment in early identification of cerebral palsy (CP), particularly during the fidgety movement period at 3–5 months of age. Additionally, assessment of motor repertoire, such as antigravity movements and postural patterns, which form the Motor Optimality Score (MOS), may provide insight into an infant’s later motor function. This study aimed to identify early specific markers for ambulation, gross motor function (using the Gross Motor Function Classification System, GMFCS), topography (unilateral, bilateral), and type (spastic, dyskinetic, ataxic, and hypotonic) of CP in a large worldwide cohort of 468 infants. We found that 95% of children with CP did not have fidgety movements, with 100% having non-optimal MOS. GMFCS level was strongly correlated to MOS. An MOS > 14 was most likely associated with GMFCS outcomes I or II, whereas GMFCS outcomes IV or V were hardly ever associated with an MOS > 8. A number of different movement patterns were associated with more severe functional impairment (GMFCS III–V), including atypical arching and persistent cramped-synchronized movements. Asymmetrical segmental movements were strongly associated with unilateral CP. Circular arm movements were associated with dyskinetic CP. This study demonstrated that use of the MOS contributes to understanding later CP prognosis, including early markers for type and severity.
Puberty is the process of physical changes between childhood and adulthood during which adolescents reach sexual maturity and become capable of reproduction. It is considered one of the main temporal windows of susceptibility for the influence of the endocrine-disrupting chemicals (EDCs). EDCs may act as single chemical agents or as chemical mixtures; they can be pubertal influencers, accelerating and anticipating the processing of maturation of secondary sexual characteristics. Moreover, recent studies have started to point out how exposure to EDCs during puberty may predispose to breast cancer later in life. In fact, the estrogen-mimicking endocrine disruptors (EEDs) may influence breast tissue development during puberty in two main ways: the first is the action on the proliferation of the breast stromal cells, the second concerns epigenetic mechanisms. The aim of this mini-review was to better highlight what is new and what is not completely known regarding the role of EDCs during puberty.
Objective: To evaluate whether lying in a nest affects the posture and spontaneous movements of healthy preterm infants. Method: 10 healthy preterm infants underwent serial video recording in the supine position, when lying in a nest and outside it, at three ages: 30-33 weeks postmenstrual age (PMA) (early preterm), 34-36 weeks PMA (late preterm) and 37-40 weeks PMA (term). The nest was shell-shaped, made by putting two rolled blankets in a form of an oval. Posture was assessed both before and after general movements by scoring the predominant postural pattern. Movements towards and across the midline, elegant wrist movements, abrupt hand and/or limb movements, rolling to side, and frozen postures of the arms and legs were assessed during four general movements. All data relating to motor and postural items were normalised into frequencies of events per minute because the general movements varied in duration. Results: When lying in the nest, the infants more often displayed a flexed posture with shoulder adduction and elbow, and hip and knee flexion, and the head was frequently in the midline. The nest was also associated with an increase in elegant wrist movements and movements towards and across the midline and a reduction in abrupt movements and frozen postures of the limbs. The nest did not affect the occurrence of asymmetrical tonic neck posture. Conclusions: A nest promotes a flexed posture of the limbs with adduction of shoulders, facilitates elegant wrist movements and movements towards and across the midline and reduces abrupt movements and frozen postures of the arms and legs.N eonatal posture requires a number of active postural control mechanisms-that is, neuromotor functionswhich allow a living system to control its body posture at rest, during displacement and during active movements. 1Postural control is intimately linked to motor control: dynamic motor actions cannot be performed without first stabilising body posture.2 This is true for voluntary as well for involuntary movements. 3Systematic observations of fetal posture show that, although the fetus does not have a preferred posture for most of the time, it has a certain repertoire of repeated active postures. The observed postures cannot be considered as random configurations of head and limb position: the fetus and the young infant have an active, but variable, posture that is relatively unrelated to the orientation of the force of gravity.1 4 As pregnancy approaches its end, body size of the fetus increases and room for movement inside the womb decreases; the head of the fetus is predominantly flexed or semi-flexed, the shoulders and hips are flexed and adducted, and the limbs are close to the trunk.The neonatal intensive care unit (NICU) exposes the preterm infant to a non-optimal physiological environment and to invasive procedures and handling. These may induce pain and stress, along with the frequent manipulations by medical and nursing staff that disrupt rest activity cycles and sleep, which may lead to chronic and prolonged stress in t...
Background. With increasing sophistication and technology, survival rates hugely improved among preterm infants admitted to the neonatal intensive care unit. Nutrition and feeding remain a challenge and preterm infants are at high risk of encountering oral feeding difficulties. Objective. To determine what facts may impact on oral feeding readiness and competence and which kind of interventions should enhance oral feeding performance in preterm infants. Search Strategy. MEDILINE database was explored and articles relevant to this topic were collected starting from 2009 up to 2011. Main Results. Increasingly robust alertness prior to and during feeding does positively impact the infant's feeding Skills. The review found that oral and non-oral sensorimotor interventions, provided singly or in combination, shortened the transition time to independent oral feeding in preterm infants and that preterm infants who received a combined oral and sensorimotor intervention demonstrated more advanced nutritive sucking, suck-swallow and swallow-respiration coordination than those who received an oral or sensorimotor intervention singly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.