Spatial modeling is an analytical procedure that simulates real-world conditions using remote sensing and geographic information systems. The field data in this study were collected from 318 survey plots in the area surrounding highway 304 in the Dong Phayayen-Khao Yai Forest Complex (DPKY-FC) during the 2019 rainy season. Forage-crop biomass was collected from all plots. We focused on sambar deer (Rusa unicolor) and gaur (Bos gaurus), which are the main prey for tigers in this area. We created spatial models using generalized linear models with stepwise regression. The results indicated that the normalized difference vegetation index (NDVI) varied directly with grass biomass but inversely with shrub biomass (p<0.05). Elevation varied directly with forb biomass but inversely with shrub biomass (p<0.05). The probability of occurrence of sambar deer varied directly with distance from disturbance variables, distance from the stream, and grass biomass (p<0.001), but inversely with NDVI (p<0.05). The occurrence of gaur varied directly with NDVI (p=0.08), but varied inversely with slope, distance from the road, and distance from the stream (p<0.05). Our results demonstrate that spatial modeling can be an effective tool for wildlife habitat management in the area surrounding highway 304.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.