The domestication of wild animals represents a major milestone for human civilization. Chicken is the largest domesticated livestock species and used for both eggs and meat. Chicken originate from the red junglefowl (Gallus gallus). Its adaptability to diverse environments and ease of selective breeding provides a unique genetic resource to address the challenges of food security in a world impacted by climatic change and human population growth. Habitat loss has caused population declines of red junglefowl in Thailand. However, genetic diversity is likely to remain in captive stocks. We determine the genetic diversity using microsatellite genotyping and the mitochondrial D-loop sequencing of wild red junglefowl. We identified potential distribution areas in Thailand using maximum entropy models. Protected areas in the central and upper southern regions of Thailand are highly suitable habitats. The Bayesian clustering analysis of the microsatellite markers revealed high genetic diversity in red junglefowl populations in Thailand. Our model predicted that forest ranges are a highly suitable habitat that has enabled the persistence of a large gene pool with a nationwide natural distribution. Understanding the red junglefowl allows us to implement improved resource management, species reintroduction, and sustainable development to support food security objectives for local people.
The gaur (Bos gaurus) is found throughout mainland South and Southeast Asia but is listed as an endangered species in Thailand with a decreasing population size and a reduction in suitable habitat. While gaur have shown a population recovery from 35 to 300 individuals within 30 years in the Khao Phaeng Ma (KPM) Non-Hunting Area, this has caused conflict with villagers along the border of the protected area. At the same time, the ecotourism potential of watching gaurs has boosted the local economy. In this study, 13 mitochondrial displacement-loop sequence samples taken from gaur with GPS collars were analyzed. Three haplotypes identified in the population were defined by only two parsimony informative sites (from 9 mutational steps of nucleotide difference). One haplotype was shared among eleven individuals located in different subpopulations/herds, suggesting very low genetic diversity with few maternal lineages in the founder population. Based on the current small number of sequences, neutrality and demographic expansion test results also showed that the population was likely to contract in the near future. These findings provide insight into the genetic diversity and demography of the wild gaur population in the KPM protected area that can inform long-term sustainable management action plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.