This paper describes the practical realization of electronically adjustable voltage-mode universal filter with three inputs and single output (TISO) using the commercially available integrated circuit (IC)-based voltage differencing buffered amplifiers (VDBAs). The realization is resistor-less and contains only two VDBAs and two capacitors. The described filter structure can realize all the five standard biquadratic filter functions from the same configuration without needing any component matching criterions. It also exhibits low-output impedance, which enables for easy cascading in voltage-mode operation. Owing to practical VDBA realization, the filter circuit can be easily made electronically tunable with orthogonal o-Q tuning. The effects of the VDBA non-idealities on the filter performance have been analyzed in detail. To prove the theoretical finding, the performance of the studied circuit was also experimentally measured using the operational transconductance amplifier
This paper proposes the design of a mixed-mode universal biquad configuration, which realizes generic filter functions in all four possible modes, namely voltage mode (VM), current mode (CM), transadmittance mode (TAM), and transimpedance mode (TIM). The filter architecture employs two voltage differencing buffered amplifiers (VDBAs), two resistors and two capacitors, and can provide lowpass (LP), bandpass (BP), highpass (HP), bandstop (BS), and allpass (AP) biquadratic filtering responses without any circuit alteration. All passive elements used are grounded, except VM. The circuit not only allows for the electronic tuning of the natural angular frequency (ωo), but also achieves orthogonal tunability of the quality factor (Q). It also provides the feature of availability of output voltage at the low-output impedance terminal in VM and TIM, and does not require inverting-type or double-type input signals to realize all the responses. Moreover, in all modes of operation, the high-Q filter can be easily obtained by adjusting a single resistance value. Influences of the VDBA nonidealities and parasitic elements are also discussed in detail. PSPICE simulations with TSMC 0.18-µm CMOS process parameters and experimental testing results with commercially available IC LT1228s have been used to validate the theoretical predictions.
This article presents a mixed-mode electronically tunable first-order universal filter configuration employing only one voltage differencing gain amplifier (VDGA), one capacitor, and one grounded resistor. With the appropriate selection of the input signals, the proposed circuit can realize all three first-order standard filter functions, namely low pass (LP), high pass (HP), and all pass (AP), in all four possible modes, including voltage mode (VM), trans-admittance mode (TAM), current mode (CM), and trans-impedance mode (TIM), from the same circuit structure. It also provides an electronic tuning of the pole frequency and the passband gain by varying transconductance values. Non-ideal and parasitic effect analyses of the proposed circuit were also carried out. PSPICE simulations and experimental findings have both confirmed the performance of the design. A number of simulations and experimental observations confirm the viability of the suggested configuration in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.