Wheat blast disease, caused by Magnaporthe oryzae (anamorph Pyricularia oryzae), produces severe damage to wheat production in South America. It was observed that many resistant cultivars contain the 2NS/2AS translocation from Triticum ventricosum. In this study, we evaluate the presence of the 2NS/2AS translocation in 57 advanced breeding lines and one variety ‘Caninde 1’ from Paraguayan wheat germplasm, using VENTRIUP‐LN2 primers. The germplasm ‘Caninde 1 and 22’ of the breeding lines, found positive for the presence of 2NS/2AS translocation, were inoculated with a single aggressive Magnaporthe pathotype P14‐039, to assess their response to wheat blast infection under controlled conditions. Based on the disease infection score, ten of the breeding lines, ‘Caninde 1’ and ‘Milan’ (positive control), were classified as resistant. Three of the remaining breeding lines were classified as moderately resistant, five as moderately susceptible and other four as susceptible. Our results show that the expression of 2NS/2AS‐based blast resistance is more dependent on genetic background of the inserted germplasm than previously envisioned.
Wheat yellow (stripe) rust caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst) is an important disease worldwide (Chen 2005; Afzal et al., 2007; Hovmøller et al. 2011). In Latin America, the disease has been reported in Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Brazil, and Uruguay (van Beuningen and Kohli, 1986; German et al., 2007). The disease was observed for the first time in Paraguay at Capitán Miranda (Itapúa) (27°12’07.5888’’S, 55°47’20.3640’’W) in an environment with average minimum temperature below 10°C in July 2021 (coldest month). Symptoms were yellow rust pustules distributed linearly on the leaves of adult host plants (Fig. 1). Oval-shaped uredinia contained unicellular, yellow to orange, spherical urediniospores (28, 82 × 26, 83 μm), within the range reported by Rioux et al. (2015). Black telia produced yellow to orange teliospores (64, 12 × 15, 46 μm), which were within the range reported by Chen et al. (2014). All susceptible wheat cultivars had up to 100% disease severity. Ten- day-old seedlings of the susceptible cultivars were inoculated in a greenhouse using urediniospores collected from the field. Two weeks after inoculation, extensive sporulation was observed on the seedlings. For pathogen identification, DNA was extracted from wheat leaf segments containing urediniospores using the PureLink® Plant Total DNA Purification Kit (Invitrogen). PCR and sequencing were carried out by Macrogen (Korea), using the following species-specific primers: PSF (5`-GGATGTTGAGTGCTGCTGTAA-3`) / PSR (5`-TTGAGGTCTTAAGGTTAAAATTG-3`), which amplifies an internal transcribed spacer (ITS) region (Zhao et al. 2007); LidPs9 (TCGGTAAAACTGCACCAATACCT) / LidPs10 (TCCCAACAGTCCCCTTCTGT), which amplifies a fragment of the RNA polymerase II gene encoding the second largest subunit (rpb2); and LidPs11 (TTACGACATCTGCTTCCGCA) / LisPs12 (TGCGATGTCAACTCTGGGAC) and LidPs13 (TACGACATCTGCTTCCGCAC) / LidPs14 (GATTGCCCGGTATTGTTGGC), both pairs amplifying fragments of the β-tubulin 1 gene (tub1) (Kuzdraliński et al. 2017). The sequences obtained were OM631935, OM638432, OM718000, and OM718001 and were aligned using the GenBank BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi), obtaining a 100% match with the following sequences: KC677574.1, KY411522.1, KY411533.1, and KY411542.1, respectively. Yellow-rust-infected leaf samples were collected from a field trial and sent to the Global Rust Reference Center (GRRC), Denmark. Simple sequence repeat (SSR) genotyping of samples from two different cultivars exhibited the genetic lineage PstS13 (www.wheatrust.org), which had previously been detected in South America (Carmona et al., 2019), thereby confirming the first report of wheat yellow rust in Paraguay. Considering that the Paraguayan wheat germplasm is highly susceptible to yellow rust, further studies are required to monitor potential spread and establishment of yellow rust in Paraguay and to explore potential sources of resistance to prevent future epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.