Currently a lot of bottles of polyethylene terephthalate (PET) are discarded into the environment. In order to reduce the disposal of this polymer in nature, this study aims to evaluate the mechanical behavior of a clayey soil mixed with fine crushed PET. The potential use of this waste material in geotechnical applications may ultimately reduce the problem of improper disposal and improve the strength and deformation characteristics of the soil. This paper presents an experimental study to evaluate the mechanical behavior of pure soil and mixtures with different contents of PET waste by triaxial tests, in order to obtain the strength parameters of the Soil-PET mixtures. The clayey soil used was mixed with 10 and 20 percent of fine crushed PET by dry weight. Characterization tests such as grain size, Atterberg limits and compaction test were performed on the soil-PET mixtures. Triaxial tests at confining stresses of 50, 150 and 300 kPa were done on the soil and mixtures. The results show that the soil strength parameters are influenced by the addition of the fine crushed PET, thus improving characteristics such as friction angle and cohesion of the Soil-PET mixtures. This improvement also depends on the confining level which the samples were submitted. These mixtures may be used in pavement and other geotechnical works, so this paper proposes to contribute to a better understanding and interpretation of the behavior of reinforced soil with waste PET.
Currently a lot of bottles of polyethylene terephthalate (PET) are discarded into the environment. In order to reduce the disposal of this polymer in nature, this study aims to evaluate the mechanical behavior of a clayey soil mixed with fine crushed PET. The potential use of this waste material in geotechnical applications may ultimately reduce the problem of improper disposal and improve the strength and deformation characteristics of the soil. This paper presents an experimental study to evaluate the mechanical behavior of pure soil and mixtures with different contents of PET waste by triaxial tests, in order to obtain the strength parameters of the Soil-PET mixtures. The clayey soil used was mixed with 10 and 20 percent of fine crushed PET by dry weight. Characterization tests such as grain size, Atterberg limits and compaction test were performed on the soil-PET mixtures. Triaxial tests at confining stresses of 50, 150 and 300 kPa were done on the soil and mixtures. The results show that the soil strength parameters are influenced by the addition of the fine crushed PET, thus improving characteristics such as friction angle and cohesion of the Soil-PET mixtures. This improvement also depends on the confining level which the samples were submitted. These mixtures may be used in pavement and other geotechnical works, so this paper proposes to contribute to a better understanding and interpretation of the behavior of reinforced soil with waste PET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.