NaCl (abiotic stress). Its expression increased fivefold in the first hour and then an interactome analysis indicated that OsSUV3 plays an important role in other pathways [18]. These are some examples that show the connection among the DNA repair machinery, stress tolerance, and the ROS production ( Figure 2) [11][12][13][14][15]."Omics" are a powerful tool to identify genes/proteins/metabolites that are involved in the plant response to a specific stress and/or to a DNA repair pathway [19]. Besides, transgenic and mutant plants are also helping in the gene characterization function. The data have shown that plant response is more complicated than previously thought. Not only is the presence of transcript (tissue or time presence) important, but also the signals are important for gene regulation, post-translation modifications (ubiquitination or sumolation), protein degradation, and protein targeting. All these may change when plants are exposed to different environmental conditions [19][20][21][22][23]. Furthermore, the next generation sequence data have shown that the signal transduction pathways actually form a network and the different networks are interconnected [24][25]. miRNAs have also been connected as a key factor for plant response to the stress and tolerance mechanism [25-28].Considering the importance of the plants for food production, it is important to identify which genes/proteins/pathways are involved in these different mechanisms. This knowledge is important for plant breeders to produce new cultivars [17,28]. Moreover, considering all that was explained above, plants are an interesting model to study stresses and DNA repair ( Figure 2) due their sessile condition, genome plasticity, and the fact that these organisms do not have a germinative cell lineage. The apical meristem cells (shoot or root) suffer division continually during plant development and then genome integrity is extremely important [2]. Then, this chapter will focus on DNA repair pathways in plants.This figure illustrates different abiotic factors such as drought, heavy metals, light, heat, ozone, lack of nutrients, cold, freezing, etc. Plants are able to perceive these different conditions or signals (on the right side) and then promote different molecular and physiological responses, which involve changes in gene expression, protein translation, post-translation modifications, degradation, epigenetic changes, and miRNAs. All these together produce a plant response that helps plants to tolerate this stress condition. Represented on the left side are the effects of an imbalance of ROS in DNA repair and the different DNA repair and genes that are involved in these different processes. The DNA repair presented in this figure includes mismatch repair (MMR), excision repair (NER and BER), and double strand breaks (HR and NHEJ).
The base excision repair (BER) pathway has been associated with genome integrity maintenance. Owing to its central role, BER is present in all three domains of life. The studies in plants, considering BER, have been conducted using Arabidopsis and rice models. Therefore, future studies regarding BER are required in other organisms, particularly in crops such as sugarcane, to understand its mechanism, which may reflect the uniqueness of DNA repair in monocots. Our previous results have revealed that sugarcane is an interesting plant for studying this pathway considering the polyploidy genome and genome evolution. This chapter aimed to characterize the BER pathway in sugarcane by using different bioinformatics tools, for example, screening for BER homologs in the sugarcane genome to identify its members. Each sequence obtained was subjected to structural analysis, and certain differences were identified when Arabidopsis was compared to other monocots, including sugarcane. Moreover, ROS1, DEM, and DML3 were not identified as a complete sequence in the sugarcane EST database. Furthermore, FEN1 is present as two sequences, namely FEN1A and FEN1B, both featuring different amino acid sequence and motif presence. Furthermore, FEN1 sequence was selected for further characterization considering its evolutionary history, as sequence duplication was observed only in the Poaceae family. Considering the importance of this protein for BER pathway, this sequence was evaluated using protein models (3D), and a possible conservation was observed during protein–protein interaction. Thus, these results help us understand the roles of certain BER components in sugarcane, and may reveal the aspects and functions of this pathway beyond those already established in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.