Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000 mJ/cm². The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5 mJ/cm², MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1 J/cm² laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8 mJ/cm², the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.
Heavy metals are natural and essential elements of the environment and living beings, produced from natural (e.g. volcanic activity and cosmic ray-induced spallation) and anthropogenic processes (e.g. industrial and fossil fuel combustion). High-concentrations of heavy metals and radionuclides are also originated from anthropogenic activities in urban and industrial areas. In this preliminary study, we analyzed the levels of heavy metals and Polonium-210 (210Po) in lung tissues in autopsies from residents of the city of Sao Paulo, SP, Brazil. In order to identify the link among sources of the heavy metals in lungs, factor analysis was performed. Of the first four factors, which explain 66% of the total variability, three were associated with vehicular sources. The fitting of a regression model with 210Po as the response variable and with the four factors as explanatory variables, controlling for age, sex and tobacco, showed a significant association between the concentration of polonium and the first factor that is generated by catalysts and brakes (coefficient = 0.90, standard error = 0.33, p = 0.016). Our findings suggest an association between traffic-related trace metals and 210Po in lung autopsies.
The accumulation of detectable amounts of radon progeny in human tissues may be a risk factor for development and progression of chronic diseases. In this preliminary study, we analyzed the levels of alpha-emitting radon progeny Polonium-210 (210 Po) in the olfactory epithelium, olfactory bulb, frontal lobe, and lung tissues in cadavers from the city of Sao Paulo, SP, Brazil. We also assessed the association between 210 Po levels and exposure parameters for urban air pollution using linear regression models adjusted for age, sex, smoke, time living in Sao Paulo, daily commuting, socioeconomic index, and anthracosis (traffic-related black carbon accumulation in the pleural region and in lymph). Our findings show that the concentration of 210 Po was associated with anthracosis in lungs of nonsmokers (coefficient = 6.0; standard error = 2.9; p = 0.04). Individuals with lower socioeconomic status also had significantly higher 210 Po levels in lungs (coefficient = −1.19; standard error = 0.58; p = 0.042). The olfactory bulb had higher 210 Po levels than either olfactory epithelium (p = 0.071), frontal lobe (p < 0.001), or lungs (p = 0.037). Our findings of the deposition of 210 Po in autopsy tissues suggest that airborne radionuclides may contribute to the development of chronic diseases, including neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.