Banana plantlets (Musa acuminata cv Grande Naine) cultivated in hydroponics take up silicon proportionally to the concentration of Si in the nutrient solution (0-1.66 mM Si). Here we study the Si status of banana plantlets grown under controlled greenhouse conditions on five soils developed from andesitic volcanic ash, but differing in weathering stage. The mineralogical composition of soils was inferred from X-ray diffraction, elemental analysis and selective chemical/mineralogical extractions. With increasing weathering, the content of weatherable primary minerals decreased. Conversely, clay content increased and stable secondary minerals were increasingly dominant: gibbsite, Fe oxides, allophane, halloysite and kaolinite. The contents of biogenic Si in plant and soil were governed by the reserve of weatherable primary minerals. The largest concentrations of biogenic Si in plant (6.9-7 g kg -1 ) and soil (50-58 g kg -1 ) occurred in the least weathered soils, where total Si content was above 225 g kg -1 . The lowest contents of biogenic Si in plant (2.8-4.3 g kg -1 ) and soil (8-31 g kg -1 ) occurred in the most weathered desilicated soils enriched with secondary oxides and clay minerals. Our data imply that soil weathering stage directly impacted the soil-to-plant transfer of silicon, and thereby the stock of biogenic Si in a soil-plant system involving a Si-accumulating plant. They further imply that soil type can influence the silicon soilplant cycle and its hydrological output.
Within the rhizosphere, arbuscular mycorrhizal (AM) fungi interact with a cohort of microorganisms, among which is the biological control agent, Trichoderma spp. This fungus parasitizes a wide range of phytopathogenic fungi, a phenomenon also reported in the extraradical mycelium (ERM) of AM fungi. Here, we question whether the mycoparasitism of the ERM could be extended to the intraradical mycelium (IRM), thus representing a pathway for the entry of Trichoderma harzianum within the root. Microcosm experiments allowing interactions between Glomus sp. MUCL 41833 placed in a clade that contains the recently described species Glomus irregulare and T. harzianum were set up under in vitro autotrophic culture conditions using potato as a host. A microscope camera-imaging system, coupled with succinate dehydrogenase staining, was used to assess the mycoparasitism in the ERM and IRM. Trichoderma harzianum colonized the ERM of the AM fungus and spread into the IRM, before exiting into the root cells. Intrahyphal growth of T. harzianum caused protoplasm degradation, decreasing the ERM and IRM viability. ERM of the AM fungus represented a pathway for the entry of T. harzianum into the roots of potato. It further sets off the debate on the susceptibility of the AM fungi of being infected by microorganisms from the rhizosphere.
Aims: This study was performed to explore the compatibility and applicability of plant beneficial micro‐organisms (i.e. Trichoderma harzianum MUCL 29707 and Glomus sp. MUCL 41833) co‐entrapped in alginate beads. Methods and Results: Spores of Glomus sp. and conidia of T. harzianum were immobilized in alginate beads and the impacts of the saprotrophic fungi on the presymbiotic and symbiotic phase of the arbuscular mycorrhizal (AM) fungi evaluated under strict in vitro culture conditions. Our results demonstrated the capacity of both micro‐organisms in combination to regrowth outside the calcium alginate coating. The presence of T. harzianum did not hinder the AM fungal development but rather stimulated its spore production and fitness. Conclusions: The combination of T. harzianum MUCL 29707 with Glomus sp. MUCL 41833 in alginate beads may represent a reliable alternative inoculum formulation for application in sustainable agriculture. Significance and Impact of the Study: The entrapment in the alginate beads of two fungi (i.e. a saprotroph and a symbiont) having beneficial effects on plants represents a promising formulation for the development of inoculants adapted to field application.
Root colonization by arbuscular mycorrhizal (AM) fungi is a dynamic process involving major changes in plant gene expression. Here, the expression of a phosphate transporter gene (PT3) and several defense genes, already known to be involved in the various stages of AM establishment, were monitored in the mycelium donor plant (MDP) in vitro culture system associating potato plantlets with an AM fungus. This system allows fast and homogenous mycorrhization of seedlings at their early stage of development by growing the plantlets in active mycelial networks, but has never been validated for gene expression analysis. Here, QRT-PCR analyses were conducted in parallel to pre- (1 day), early (2 and 3 days), and late (6, 9, and 15 days) stages of root colonization. We observed the induction of a plant gene marker of AM root colonization (PT3) at the late stage and the induction of MAPK and PAL genes at the early and late stages of root colonization. We also demonstrated the induction of PR1 and PR2 genes at pre- and late stages and of GST1 and Lox genes at a late stage of root colonization. These results validated the MDP in vitro culture system as an optimal tool to study gene expression analysis during the AM fungi establishment. This system further opened the door to investigate gene networks associated with the plants-AM fungi symbiosis.
Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.