Many different cultivation techniques and inoculum products of the plant-beneficial arbuscular mycorrhizal (AM) fungi have been developed in the last decades. Soil- and substrate-based production techniques as well as substrate-free culture techniques (hydroponics and aeroponics) and in vitro cultivation methods have all been attempted for the large-scale production of AM fungi. In this review, we describe the principal in vivo and in vitro production methods that have been developed so far. We present the parameters that are critical for optimal production, discuss the advantages and disadvantages of the methods, and highlight their most probable sectors of application.
Actively growing extraradical hyphae extending from mycorrhizal plants are an important source of inoculum in soils which has seldom been considered in vitro to inoculate young plantlets. Seedlings of Medicago truncatula were grown in vitro in the extraradical mycelium network extending from mycorrhizal plants. After 3, 6, 9, 12, and 15 days of contact with the mycelium, half of the seedlings were harvested and analyzed for root colonization. The other half was carefully transplanted in vitro on a suitable growth medium and mycelium growth and spore production were evaluated for 4 weeks. Seedlings were readily colonized after 3 days of contact with the mycelium. Starting from 6 days of contact, the newly colonized seedlings were able to reproduce the fungal life cycle, with the production of thousands of spores within 4 weeks. The fast mycorrhization process developed here opens the door to a broad range of in vitro studies for which either homogenous highly colonized seedlings or mass-produced in vitro inoculum is necessary.
A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.