To assess the capacity of a peptide-based immunotherapy to induce systemic tolerance via the nasal route, we designed three long overlapping peptides of 44–60 aa covering the entire sequence of phospholipase A2 (PLA2), a major bee venom allergen. Both prophylactic and therapeutic intranasal administrations of long peptides to PLA2-hypersensitive CBA/J mice induced specific T cell tolerance to the native allergen. In prophylactic conditions, this tolerance was marked by a suppression of subsequent specific IgE response, whereas the therapeutic approach in presensitized mice induced a more than 60% decrease in PLA2-specific IgE. This decline was associated with a shift in the cytokine response toward a Th1 profile, as demonstrated by decreased PLA2-specific IgG1 and enhanced IgG2a levels, and by a decline in the specific IL-4/IFN-γ ratios. T cell transfer from long peptide-tolerized mice to naive animals abrogated the expected anti-PLA2 IgE and IgG1 Ab response, as well as specific T cell proliferation, but enhanced specific IgG2a response upon sensitization with PLA2. These events were strongly suggestive of a clonal anergy affecting more profoundly Th2 than the Th1 subsets. In conclusion, these results demonstrate that allergen-derived long peptides delivered via the nasal mucosa may offer an alternative to immunotherapy with native allergens without the inherent risk of systemic anaphylactic reactions. Moreover, long peptides, in contrast to immunotherapy strategies based on short peptides, have the advantage of covering all potential T cell epitopes, and may represent novel and safe tools for the therapy of allergic diseases.
15mer peptides might not be sensitive enough to fully delineate all potential T-cell epitopes scattered along the allergen. Since they do not bind IgE in vitro or only weakly, and taking into account a T-cell response frequently directed to multiple epitopes, long overlapping peptides may represent ideal tools for immunotherapy.
To evaluate a long peptide‐based allergy vaccine in a murine model, CBA/J mice were sensitized with low dose alum‐adsorbed phospholipase A2 (PLA2), a major bee venom allergen. Presensitized mice were treated by daily i.p. injections of a mixture of three long overlapping peptides (44‐ to 60‐mer) spanning the entire PLA2 molecule (100 μ g/peptide) for 6 consecutive days. This therapeutic approach induced a sharp drop in PLA2‐specific IgE, an increase in specific IgG2a, and a marked T cell hyporesponsiveness. T cell cytokine secretion was characterized by a shift from a Th2 to a Th1 profile. Prophylactic treatment of naive mice with long peptides prior to sensitization with PLA2 induced a comparable modulation of B and T cell responses. Upon i.p. challenge with native PLA2, presensitized mice treated with the long peptide mixture were fully protected from anaphylaxis. This indicated that allergen‐derived long overlapping peptides were safe and able to modulate an established Th2 response or to prevent its development. Furthermore, long peptide‐based immunotherapy provided clinical protection against anaphylaxis, thus appearing as a promising approach of the therapy of allergic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.