The family of serpins is known to fold into a metastable state that is required for the proteinase inhibition mechanism. One of the consequences of this conformational flexibility is the tendency of some mutated serpins to form polymers, which occur through the insertion of the reactive center loop of one serpin molecule into the A-sheet of another. This ''A-sheet polymerization'' has remained an attractive explanation for the molecular mechanism of serpinopathies. Polymerization of serpins can also take place in vitro under certain conditions (e.g., pH or temperature). Surprisingly, on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, bovSERPINA3-3 extracted from skeletal muscle or expressed in Escherichia coli was mainly observed as a homodimer. Here, in this report, by site-directed mutagenesis of recombinant bovSERPINA3-3, with substitution D371A, we demonstrate the importance of D371 for the intermolecular linkage observed in denaturing and reducing conditions. This residue influences the electrophoretic and conformational properties of bovSERPINA3-3. By structural modeling of mature bovSERPINA3-3, we propose a new ''non-A-sheet swap'' model of serpin homodimer in which D371 is involved at the molecular interface.
α1-Antichymotrypsin is encoded by the unique SERPINA3 gene in humans, while it is encoded by a cluster of eight closely related genes in cattle. BovSERPINA3 proteins present a high degree of similarity and significant divergences in the reactive centre loop (RCL) domains which are responsible for the antiprotease activity. In this study, we analysed their expression patterns in a range of cattle tissues. Even if their expression is ubiquitous, we showed that the expression levels of each serpin vary in different tissues of 15-month-old Charolais bulls. Our results led us to focus on bovSERPINA3-7, one of the two most divergent members of the bovSERPINA3 family. Expression analyses showed that bovSERPINA3-7 protein presents different tissue-specific patterns with diverse degrees of N-glycosylation. Using a specific antibody raised against bovSERPINA3-7, Western blot analysis revealed a specific 96 kDa band in skeletal muscle. BovSERPINA3-7 immunoprecipitation and mass spectrometry revealed that this 96 kDa band corresponds to a complex of bovSERPINA3-7 and creatine kinase M-type. Finally, we reported that the bovSERPINA3-7 protein is present in slow-twitch skeletal myofibres. Precisely, bovSERPINA3-7 specifically colocalized with myomesin at the M-band region of sarcomeres where it could interact with other components such as creatine kinase M-type. This study opens new prospects on the bovSERPINA3-7 function in skeletal muscle and promotes opportunities for further understanding of the physiological role(s) of serpins.
Muscle atrophy is associated with many diseases including genetic disorders, sarcopenia, or cachexia syndromes. Myostatin (Mstn), a transforming growth factor‐beta (TGF‐β) member, plays a key role in skeletal muscle homeostasis as a powerful negative regulator. Over the last decade, about 15 clinical trials aimed at inhibiting the Mstn pathway, failed to produce conclusive results. In this context, we investigated whether growth and differentiation factor‐associated serum protein‐1 (GASP‐1) or GASP‐2, two natural inhibitors of Mstn, might represent a potential therapeutic. As we previously reported, mice overexpressing Gasp‐1 (Tg(Gasp‐1)) present an increase of muscle mass but develop metabolic disorders with aging. Here, we showed that overexpression of Gasp‐2 increases the muscular mass without metabolic defects. We also found that Tg(Gasp‐2) mice displayed, like Mstn–/– mice, a switch from slow‐ to fast‐twitch myofibers whereas Tg(Gasp‐1) mice exhibit a reverse switch. Our studies supported the fact that GASP‐2 has less affinity than GASP‐1 for Mstn, leading to a constitutive Mstn upregulation only in Tg(Gasp‐1) mice, responsible for the observed phenotypic differences. Altogether, our findings highlighted a gene expression regulatory network of TGF‐β members and their inhibitors in muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.