A microporous and permeable wall is important for the healing of vascular prostheses, however, the significance of its permeability to soluble substances at subcellular level has not been demonstrated. Polyester arterial prostheses were prepared in such a way that each of them contained three segments, of which at least one segment was impervious and another segment was permeable to water but impermeable to cells. Twenty graft segments were implanted in 7 dogs as a thoraco-abdominal bypass for 2 months. The prostheses were then harvested, photographed, and treated for histological and morphological studies. The low porosity graft capped by two thrombogenic segments was fully endothelialized, proving the fallout mechanism. The striking contrast with its impermeable counterpart demonstrated that a wall permeable to small substances of subcellular level was critical for the endothelial healing. A wide range of water permeabilities did not reveal advantages of high water permeable segments over low water permeable ones. Endothelial ingrowth from anastomoses was also jeopardized in the absence of wall permeability. In conclusion, transmural communication at a subcellular level may have played a critical role in the fallout based-endothelialization of arterial prostheses in canine. This highlights the potential function of perigraft cytokines and growth factors in endothelial healing.
In this study, we aimed to investigate changes to the fabric of Talent stent-grafts following implantation of aortic endografts and to determine the possible causes of fatigue and/or failure of the grafts. Six devices were explanted at reoperation (N=5) and autopsy (N=1). Selected segments were assessed nondestructively by gross observation and destructively by analyzing textile characteristics and chemical properties. All of the devices showed a 4/4 twill woven fabric of monofilament polyester. These devices, explanted at reoperation and autopsy, presented different levels of fatigue and/or failure. Numerous holes were found in the fabric of two devices. The minor damage caused by the passage of the sutures through the weave to fasten the Nitinol wires did not progress significantly over time. The sutures remained relatively intact, except for some distortions. The main failure mode was the abrasion of the yarns at the apices of adjacent Nitinol stents. In two devices, this abrasion resulted in fraying of the yarns and holes in the fabric tubes. This short series of explanted devices provides evidence of damage to polyester fabric used in aortic endografts and raises questions regarding their resistance to abrasion and the risk of endoleak associated with monofilament fabric yarn.
In confocal microscopy, the object is illuminated and observed so as to rid the resulting image of the light from out-of-focus planes. Imaging may be performed in the reflective or in the fluorescence mode. Confocal microscopy allows accurate and non-destructive optical sectioning in a plane perpendicular or parallel to the optical axis of the microscope. Further digital three-dimensional treatments of the data may be performed so as to visualize the specimen from a variety of angles. Several examples illustrating each of these possibilities are given. Three-dimensional reconstitution of nuclear components using a cubic representation and a ray-tracing based method are also given. Instrumental and experimental factors can introduce some bias into the acquisition of the 3-D data set: self-shadowing effects of thick specimens, spherical aberrations due to the sub-optimum use of the objective lenses and photo-bleaching processes. This last phenomenon is the one that most heavily hampers the quantitative analysis needed for a 3-D reconstruction. We delineate each of these problems and indicate to what extent they can be solved. Some tips are given for the practice of confocal microscope and image recovery: how to determine empirically the thickness of the optical slices, how to deal with extreme contrasts in an image, how to prevent artificial flattening of the specimens. Finally, future prospects in the field are outlined. Particular mention of the use of pulsed lasers is made as they may be an alternative to UV-lasers and a possible means to attenuate photodamage to biological specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.