We generated knockout mice for MCM8 and MCM9 and show that deficiency for these genes impairs homologous recombination (HR)-mediated DNA repair during gametogenesis and somatic cells cycles. MCM8(-/-) mice are sterile because spermatocytes are blocked in meiotic prophase I, and females have only arrested primary follicles and frequently develop ovarian tumors. MCM9(-/-) females also are sterile as ovaries are completely devoid of oocytes. In contrast, MCM9(-/-) testes produce spermatozoa, albeit in much reduced quantity. Mcm8(-/-) and Mcm9(-/-) embryonic fibroblasts show growth defects and chromosomal damage and cannot overcome a transient inhibition of replication fork progression. In these cells, chromatin recruitment of HR factors like Rad51 and RPA is impaired and HR strongly reduced. We further demonstrate that MCM8 and MCM9 form a complex and that they coregulate their stability. Our work uncovers essential functions of MCM8 and MCM9 in HR-mediated DSB repair during gametogenesis, replication fork maintenance, and DNA repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.